
Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 1 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Peter’s TextBoxes

User’s Guide

Click on any of these topics to jump to them:

 Enhanced TextBox Control Using Adding Properties

 IntegerTextBox Control Using Adding Properties

 DecimalTextBox Control Using Adding Properties

 CurrencyTextBox Control Using Adding Properties

 PercentTextBox Control Using Adding Properties

 FilteredTextBox Control Using Adding Properties

 MultiSegmentDataEntry Control Using Adding Properties

 Segments of the MultiSegmentDataEntry Control Using Adding Properties

 Page Level Properties (The PeterBlum.DES.Globals.Page object)

 Validation with the Native Validation Framework

 JavaScript Support Functions

 Troubleshooting

 Table Of Contents

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 2 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Table of Contents

License Information...7

Platform Support ...7

Technical Support and Other Assistance...8
Troubleshooting Section of this Guide ..8
Developer’s Kit..8
PeterBlum.Com MessageBoard...8
Getting Product Updates..8
Technical Support ..8

WHAT DOES PETER’S DATA ENTRY SUITE DO?.. 10

PETER’S TEXTBOXES OVERVIEW.. 13

Enhanced TextBox Overview..13

IntegerTextBox, DecimalTextBox, CurrencyTextBox, and PercentTextBox Overview...14

FilteredTextBox Overview..14

MultiSegmentDataEntry Control Overview ...15

Date and Time Entry TextBoxes ..16

Other Data Entry Controls ...16

ENHANCED TEXTBOX CONTROL ... 17

Features ..18

Using the Enhanced TextBox Control..19
Getting and Setting the Value of the TextBox...19

Data Entry Validation ..19
When the TextBox is Empty..21
Validation on AutoPostBack ...22
Interactive Hints...23

Setting Up Hints with PopupViews ...24
Setting Up Hints in a Label or Panel..25

AutoComplete and “Smart Change System” ...26
Other Behaviors ...27

Adding an Enhanced TextBox ..28

Converting the ASP.NET TextBox to the Enhanced TextBox...30

Properties for the Enhanced TextBox..31
Getting And Setting the Value Properties..31
Editing Properties ..32
Behavior Properties ...34
Appearance Properties ...35
AutoPostBack Properties ...36
Value When Blank Properties..37

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 3 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

ToolTip Properties ...38
Hint Properties ...39
Tab Rules Properties..41
Client-Side Functions Properties ...43

INTEGERTEXTBOX CONTROL... 45

Features ..46

Using the IntegerTextBox ...47
Getting and Setting the Value of the TextBox...48

Data Entry Validation ..48
Formatting The Text ..49
Adding A Spinner ..50
Connecting Data To Other Fields On The Client-Side ..51

Adding a IntegerTextBox..52

Properties for the IntegerTextBox ...54
Getting And Setting The Value Properties ..55
Editing Properties ..57
Formatting Properties ..59
Spinner Properties..60

DECIMALTEXTBOX CONTROL .. 62

Features ..63

Using the DecimalTextBox..64
Getting and Setting the Value of the TextBox...65

Data Entry Validation ..65
Formatting The Text ..66

Other Formatting Rules ...66
Adding A Spinner ..67
Connecting Data To Other Fields On The Client-Side ..68

Adding a DecimalTextBox ..69

Properties for the DecimalTextBox..71
Getting And Setting The Value Properties ..72
Editing Properties ..74
Formatting Properties ..76
Spinners Properties ..77

CURRENCYTEXTBOX CONTROL .. 79

Features ..80

Using the CurrencyTextBox ...81
Getting and Setting the Value of the TextBox...82

Data Entry Validation ..82
Formatting The Text ..83

Other Formatting Rules ...83
Adding A Spinner ..84
Connecting Data To Other Fields On The Client-Side ..85

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 4 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Adding a CurrencyTextBox..86

Properties for the CurrencyTextBox ...88
Getting And Setting The Value Properties ..89
Editing Properties ..91
Formatting Properties ..93
Spinner Properties..94

PERCENTTEXTBOX CONTROL.. 96

Features ..97

Using the PercentTextBox...98
Getting and Setting the Value of the TextBox...99

Data Entry Validation ..99
Formatting The Text ..100

Other Formatting Rules ...100
Adding A Spinner ..101
Connecting Data To Other Fields On The Client-Side ..102

Adding a PercentTextBox ...103

Properties for the PercentTextBox...105
Getting And Setting The Value Properties ..106
Editing Properties ..109
Formatting Properties ..111
Spinner Properties..112

FILTEREDTEXTBOX CONTROL ... 114

Features ..115

Using the FilteredTextBox ..116
Setting the Character Set..116

Adding a FilteredTextBox Control...117

Properties of the FilteredTextBox ..120
Get and Set The Value Properties ..120
Character Set Rules Properties...121

MULTISEGMENTDATAENTRY CONTROL... 123

Features ..124

Using the MultiSegmentDataEntry Control..125
Defining Segments...126

Segment Validation Rules ...126
Splitting and Joining Rules ..126
Formatting The Segment ...126

Getting and Setting the Value of the Control...127
Data Entry Validation ..127

Validation on AutoPostBack ...129
Interactive Hints...130

Setting Up Hints with PopupViews ...130
Setting Up Hints in a Label or Panel..131

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 5 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Data Entry Rules..132
Changing the Appearance with Style Sheets ...133

Adding a MultiSegmentDataEntry Control ..134

Properties for the MultiSegmentDataEntry Control..137
Getting and Setting Values Properties ...138
Segments Property ...140
Behavior Properties ...142
Tab Rules Properties..144
Appearance Properties ...145
Hint Properties ...147

Properties for the PeterBlum.DES.TextSegment Class..148
Get and Set Text Properties ...148
Split and Join Text Properties ..149
Data Entry and Validation Rule Properties..152
Appearance Properties ...153
Behavior Properties ...155
Hint Properties ...156

Properties for the PeterBlum.DES.IntegerTextSegment Class ...158
Get and Set Text Properties ...158
Split and Join Text Properties ..159
Data Entry and Validation Rules Properties ..162
Appearance Properties ...163
Behavior Properties ...165
Spinners Properties ..166
Hint Properties ...167

Properties for the PeterBlum.DES.DropDownListSegment Class ..169
Get and Set Text Properties ...169
Split and Join Text Properties ..170
DropDownList Items Properties ..173
Data Entry and Validation Rules Properties ..174
Appearance Properties ...175
Behavior Properties ...176
Hint Properties ...177

Examples...179
U.S./Canada Phone Number ..179
IP Address..180
Date..181

MultiSegmentDataEntryValidator Control ..182
Using This Condition...182
Condition Properties for MultiSegmentDataEntryValidator..183

Subclassing MultiSegmentDataEntry ..184

ADDITIONAL TOPICS FOR USING THESE CONTROLS... 185

PAGE LEVEL PROPERTIES.. 186

Properties on PeterBlum.DES.Globals.Page ...186
SpinnerManager Property ..189

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 6 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

VALIDATION WITH THE NATIVE VALIDATION FRAMEWORK.. 191

Setting Up DES with the Native Validation Framework..192

Check the DataType with the CompareValidator Control ..193
Using this Validator ...193
Properties ...193

Compare To Value with the CompareValidator Control...194
Using this Validator ...194
Properties ...194

Compare Two Fields with the CompareValidator Control ...195
Using this Validator ...195
Properties ...195

RangeValidator Control..196
Using this Validator ...196
Properties ...196

DifferenceValidator Control ...197
Using this Validator ...197
Properties ...197

MultiSegmentDataEntryValidator Control ..199
Using This Validator..199
Properties for MultiSegmentDataEntryValidator ..199

JAVASCRIPT SUPPORT FUNCTIONS ... 200

General Utilities ...200

Getting and Setting the Value of Numeric TextBoxes ..203

Validation Functions ...205

MultiSegmentDataEntry Functions ...206

ADDING YOUR JAVASCRIPT TO THE PAGE.. 211

Embedding the ClientID into your Script..211

Debugging Your JavaScript..212

TROUBLESHOOTING .. 213

Runtime Problems ...213

Design Mode Problems..213

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 7 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

License Information
This document includes information for the Peter’s TextBoxes module in Peter’s Data Entry Suite. If you licensed the
complete Suite or the Peter’s TextBoxes module, you have all features found in this User’s Guide, unless otherwise noted.

Platform Support
This product was written for Microsoft ASP.NET. It supports all versions from 1.0 up. It includes assemblies specific to
ASP.NET 1.x and ASP.NET 2. It is compatible with all browsers, scaling down automatically when the browser has a
limitation. In some cases, that means the control turns off its client-side functionality or turns itself off entirely.

This product is designed to scale properly even when the Page’s ClientTarget property causes the HttpBrowserCapabilities
(Request.Browser) to falsely state the browser. In other words, you can’t fool these controls with an upLevel clientTarget.
This is absolutely necessary because feeding the wrong browser will generate incorrect client side scripts giving the user’s
scripting errors. It was also considered a requirement to hide features that didn’t work on the browser to give the user the best
interface. For more, see “Browser Support” in the General Features Guide.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 8 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Technical Support and Other Assistance
PeterBlum.com offers free technical support. This is just one of the ways to solve problems. This section provides all of your
options and explains how technical support is set up.

Troubleshooting Section of this Guide
This guide includes an extensive set of problems and their solutions. See “Troubleshooting”. This information will often save
you time.

Developer’s Kit
The Developer’s Kit is a free download that provides documentation and sample code for building your own classes with this
framework. It includes:

 Developer’s Guide - Overviews of each class with examples, step-by-step guides, and other tools to develop new classes.

 MSDN-style help file - Browse through this help file to learn about all classes and their members.

 Sample code in C# and VB.

You can download it from http://www.peterblum.com/DES/DevelopersKit.aspx.

PeterBlum.Com MessageBoard
Use the message board at http://groups.yahoo.com/groups/peterblum to discuss issues and ideas with other users.

Getting Product Updates
As minor versions are released (4.0.1 to 4.0.2 is a minor version release), you can get them for free. Go to
http://www.PeterBlum.com/DES/Home.aspx. It will identify the current version at the top of the page. You can read about all
changes in the release by clicking “Release History”. Click “Get This Update” to get the update. You will need the serial
number and email address used to register for the license.

As upgrades are offered (v4.0 to v4.1), PeterBlum.com will determine if there is an upgrade fee at the time. You will be
notified of upgrades and how to retrieve them through email.

PeterBlum.com often adds new functionality into minor version releases.

Technical Support
You can contact Technical Support at this email address: Support@PeterBlum.com. I (Peter Blum) make every effort to
respond quickly with useful information and in a pleasant manner. As the only person at PeterBlum.com, it is easy to imagine
that customer support questions will take up all of my time and prevent me from delivering to you updates and cool new
features. As a result, I request the following of you:

 Please review the Troubleshooting section first. See “Troubleshooting”.

 Please try to include as much information about your web form or the problem as possible. I need to fully
understand what you are seeing and how you have set things up.

 If you have written code that interacts with my controls or classes, please be sure you have run it through a debugger
to determine that it is working in your code or the exact point of failure and error it reports.

 If you are subclassing from my controls, I provide the DES Developer's Kit that includes the Developers Guide.pdf,
Classes And Types help file, and sample files. I can only offer limited assistance as you subclass because this kind
of support can be very time consuming. I am interested in any feedback about my documentation’s shortcomings so I
can continue to improve it.

 I cannot offer general ASP.NET, HTML, style sheet, JavaScript, DHTML, DOM, or Regular Expression mentoring.
If your problem is due to your lack of knowledge in any of these technologies, I will give you some initial help and
then ask you to find assistance from the many tools available to the .Net community. They include:

http://www.peterblum.com/DES/DevelopersKit.aspx�
http://groups.yahoo.com/groups/peterblum�
http://www.peterblum.com/DES/Home.aspx�
mailto:Support@PeterBlum.com�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 9 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

o Books

o www.asp.net forums and tutorials

o Microsoft’s usenet newsgroups such as microsoft.public.dotnet.framework.aspnet. See
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&group=microsoft.public.dotnet

o Google searches. (I virtually live in Google as I try to figure things out with ASP.NET.)
http://www.Google.com. Don’t forget to search the “Groups” section of Google!

o http://aspnet.4guysfromrolla.com/, http://www.dotnetjunkies.com, http://www.aspalliance.com/

o For DHTML, Microsoft provides an excellent guide at http://msdn2.microsoft.com/en-
us/library/ms533050.aspx.

o For DOM, start with the DHTML guide. Topics that are also in DOM are noted under the heading
“Standards Information”

o For JavaScript, I recommend http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference.

As customers identify issues and shortcomings with the software and its documentation, I will consider updating these areas.

http://www.asp.net/�
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&group=microsoft.public.dotnet�
http://www.google.com/�
http://aspnet.4guysfromrolla.com/�
http://www.dotnetjunkies.com/�
http://www.aspalliance.com/�
http://msdn2.microsoft.com/en-us/library/ms533050.aspx�
http://msdn2.microsoft.com/en-us/library/ms533050.aspx�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 10 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

What does Peter’s Data Entry Suite Do?
Peter’s Data Entry Suite (“DES”) is a suite of ASP.NET controls designed around the concepts of data entry: validation,
entry fields, and interactive behaviors in response to a user’s action. The suite includes several modules that can be purchased
stand-alone. This User’s Guide covers the data entry controls.

Peter’s Data Entry Suite was designed to improve upon the form validation concept build into the .Net framework. It
completely replaces Microsoft’s original Validator controls, as they imposed serious limitations on how a Validator can look
and act. As part of the work, extensive client-side JavaScript code was written. This JavaScript code lends itself well to other
client-side tasks, such as formatting the entry of a CurrencyTextBox and setting focus to a field. Since validation is always
part of data entry, Peter’s Data Entry Suite addresses numerous other requirements of a good user interface for data entry.

Here are the major aspects of Peter’s Data Entry Suite:

 Validation – The same idea as the concept introduced by Microsoft, with Validator controls to detect and report errors on
the page. DES provides extensive enhancements over Microsoft’s controls that allow your sites to have a more
professional appearance with Validators and make it much easier to evaluate the data in your web form. Its rich feature
set lets you set a few properties instead of writing custom code and hacks to work around the limitations of Microsoft’s
Validators. It includes 28 Validators and several other controls.

o There are 11 Validators in Peter’s Professional Validation, designed to handle common cases, like required
fields, comparisons and textlength limits.

o There are 14 Validators in Peter’s More Validators, designed to handle more specialized situations like credit
card numbers and duplicate entries amongst several fields.

o There are two Validators designed for you to plug in your own validation logic, the CustomValidator and
IgnoreConditionValidator

o The MultiConditionValidator lets you combine the validation logic of other Validators into one boolean
expression, often avoiding the use of writing code in CustomValidators.

o The ValidationSummary control displays a consolidated list of all errors reported as the page is submitted.

o The RequiredFieldMarker and RequiredFieldDescription controls standardize the user interface for indicating a
field is required.

o The CombinedErrorMessages control merges the error messages from several Validators to save screen real
estate.

o The LocalizableLabel control is an enhanced Label that supports localization. Localization is an important
aspect to DES. Labels are optionally shown in the error messages.

o A variety of button controls and ways to submit the page so that validation is run automatically.

See the Validation User’s Guide.

 TextBoxes – DES provides a number of controls as replacements to Microsoft’s TextBox control.

o Its own enhanced TextBox control, the basis for all other textboxes, introduces numerous common client-side
tricks for TextBoxes.

o The IntegerTextBox, DecimalTextBox, CurrencyTextBox, and PercentTextBox handle data entry of these
numeric formats.

o The FilteredTextBox limits entry to the character set of your choice.

o The MultiSegmentDataEntry control combines multiple textboxes and dropdownlists together to handle a single
field that has a distinctive pattern, such as phone numbers and credit card numbers. It is a great substitute for a
masked textbox with a more powerful user interface.

This User’s Guide addresses these features.

 Date And Time – Controls for entry of date and time information.

o DateTextBox – Date entry with a popup calendar

o AnniversaryTextBox – Date entry without the year.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 11 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

o MonthYearTextBox – Month and year entry

o TimeOfDayTextBox – Time of day entry

o DurationTextBox – Time duration entry

o Calendar – A very powerful replacement to the native ASP.NET calendar

o MonthYearPicker – Month and year entry using the mouse

o TimePicker – Time entry using the mouse

o Popup versions of Calendar, MonthYearPicker, and TimePicker

o Validators for these controls. There are versions for the DES Validation Framework and Native ASP.NET
Validation Framework if you choose not to use the DES Validation Framework.

See the Date And Time User’s Guide.

 Interactive Pages – There are numerous ways to make your web forms more interactive and user friendly through
JavaScript. These techniques will make your web forms feel more like a window in a Windows application.

o The FieldStateController monitors clicks and changes on a field and modifies other controls. It can modify
almost any attribute of a field: visibility, enabled, style sheet class, value and more. For example, use it when
you want a textbox to be disabled until the user marks a checkbox. There are four versions of the
FieldStateController: FieldStateController, MultiFieldStateController, FSCOnCommand, and
MultiFSCOnCommand.

o The CalculationController lets you describe a calculation that uses the textboxes on the page. It can display the
result of the calculation in a label or another textbox. Validators can validate the result of the calculation. For
example, a RangeValidator can make sure the total of 3 textboxes is within 0 to 100.

o Add a ContextMenu to your web forms, supplying javascript commands to regions and controls within the page.

o The TextCounter monitors the number of keystrokes in a textbox, displaying the count and warning the user as
they near and reach the limits.

o The Interactive Hints system shows a hint as the user moves into a field. The hint can appear in a popup
(floating element) or on the page in a Label or Panel. It can replace standard ToolTips and can appear in the
browser’s status bar too.

o The ChangeMonitor watches for edits in the page. Until a change is made, selected buttons are disabled. After,
they are enabled.

o Enhanced Buttons with several javascript tricks including showing a confirmation message, disabling until data
is changed (see the ChangeMonitor), and disabling on submit.

o Direct the Enter key to click a specific button. Enhances DES’s TextBoxes with the EnterSubmitsControlID
property.

See the Interactive Pages User’s Guide.

 Input Security – Hackers attack your web site through its inputs – data entry controls, query strings, hidden fields, and
cookies – to access your database (called SQL Injection) and modify your pages with scripts (called Script Injection or
Cross-site scripting). These attacks can be very damaging to a business, destroying data, exposing private customer
information, or exposing customers to content that you would never want on your site. Every public web site should be
designed with a defense system. With Peter’s Input Security, you have that defense system.

Validators play an important role in blocking these attacks. However, they have their limitations. Peter’s Input Security
introduces specialized Validators to detect and block attacks. It also provides a “best practices” framework for protecting
your site against attacks.

See the Input Security User’s Guide.

 General Features – The features throughout this product are supported by these controls and tools:

o PageManager control – Each page has numerous settings. Use this control to apply those settings in without
programming.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 12 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

o Global Settings Editor – A stand-alone Windows application to customize numerous global settings used by
DES.

o NativeControlExtender control – Extends various native controls to support DES Validation, Interactive Hints,
the ChangeMonitor, and more.

o String Lookup System – A mechanism to set most string-type properties from data stored in resources or a
database.

o LocalizableLabel control – The Label control enhanced to support the String Lookup System.

Throughout this product, one of the most important design concepts is to allow expansion through the object-oriented
concepts of subclassing and delegation. This allows you to build your web site the way you want it. The controls are built
upon several discrete object classes. Even the client-side JavaScript is designed for expansion. See the Developer’s Kit to
learn how to program with Peter’s Data Entry Suite.

http://www.peterblum.com/des/developerskit.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 13 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Peter’s TextBoxes Overview
Peter’s Data Entry Suite (“DES”) focuses on enhancing data entry on your ASP.NET web forms. The TextBox control is
one of the most dynamic and frequently used data entry controls. The textual data it gathers represents a wide variety of data
types: free-form text, heavily patterned text (like a phone number), numbers, dates and more.

The TextBox control supplied with ASP.NET does little to handle unique data types. It doesn’t filter out illegal characters. It
requires you to write code to convert between the data type and its string representation. There are also numerous client-side
techniques web page developers use, none of which are addressed with the ASP.NET TextBox.

DES has built enhanced TextBox controls and its MultiSegmentDataEntry control to help with heavily patterned text. Here
are the features of these controls.

Enhanced TextBox Overview
The Enhanced TextBox is a descendant of the ASP.NET TextBox, and is intended to be used in all places where you now use
the ASP.NET TextBox. Consider converting your existing forms to it or one of the other DES TextBoxes, as they all subclass
from PeterBlum.DES.TextBox.

The Enhanced TextBox has several useful client-side extensions:

 The “Value When Blank” system lets you customize how blank textboxes are displayed. You can provide text like
“Please fill this in” with the ValueWhenBlank property and a style sheet class to make blank fields stand out with the
ValueWhenBlankCssClass property.

 The DisableAutoComplete property lets you omit the Autocomplete list from the textbox. There are cases where
Autocomplete does not belong. Supported by several browsers.

 The DisablePaste property turns off the ability to paste on Internet Explorer and any other browser that supports the
client-side onpaste event.

 The AutoPostBack feature now supports client-side validation of the textbox before submitting the page when using the
AutoPostBackValidates property. This way, it only submits if the changed textbox is also valid.

 Auto tabbing to another field in three ways:

1. Use the TabAtMaxLength property to tab when the text fills to the MaxLength.

2. Use the TabOnEnterKey property to tab when the user types ENTER.

3. Use the TabOnTheseChars to define a list of characters that tab when any are typed.

 Use the EnterSubmitsControlID property to specify a button that will be clicked when ENTER is typed. This feature
requires a license for the Peter’s Interactive Pages.

 Use the Hint property to display a hint as the user tabs into the field. The hint is removed as tab departs the field. This
feature requires a license for the Peter’s Interactive Pages.

 Smarter detection of “onchange” events. The client-side onchange event is a signal that the textbox has changed after
focus leaves the field. Validator controls and the TextBoxes that autoreformat rely on the onchange event. However,
browsers have two limitations that prevent them from firing the onchange event, even after a change is made:

1. The Autocomplete feature on Internet Explorer does not cause it to fire. So users who pick from the Autocomplete
list do not get the immediate feedback of validation.

2. When JavaScript assigns a new value to the textbox, it does not cause it to fire.

Enhanced TextBox installs code that always fires the onchange event when focus is lost and a change occurred.

In addition, it has these enhancements:

 The TextAlign property lets you choose between left, center, and right alignment.

 The ToolTip supports the String Lookup System through its ToolTipLookupID property. This provides localization on
the ToolTip.

See “Enhanced TextBox Control”.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 14 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

IntegerTextBox, DecimalTextBox, CurrencyTextBox,
and PercentTextBox Overview
These four TextBoxes elegantly handle four numeric data types: Integers, Decimals, Currencies, and Percents. They all have
these features:

 They subclass from PeterBlum.DES.TextBox, inheriting all of its qualities.

 They are designed around data entry for a particular data type.

 They are culture sensitive, respecting the CultureInfo object defined on the PeterBlum.DES.Globals.Page.CultureInfo
property.

 On the client-side, they filter keystrokes so users can only enter characters suitable to the data type.

 They include server-side properties to get and set the text using the data type, avoiding you having to write conversion
code. For example, an IntegerTextBox includes the property IntegerValue that supports integer values.

 On the client-side, they reformat if needed as the user exits the textbox. For example, if the user enters “43” into a
CurrencyTextBox, it reformats to “43.00” (assuming the currency culture uses that format.)

 When you attach a DES-based Validator to them, the Validator automatically determines the correct data type.

 They offer a spinner control (up and down arrows to the right of the textbox) to increment the value.

Features unique to each TextBox are:

 IntegerTextBox – Accepts positive and negative integers. There is a property to only permit non-negative values.

 DecimalTextBox – Accepts positive and negative decimal values. There is a property to only permit non-negative values.
It conforms to the culture of the page (which can be overridden.)

 CurrencyTextBox – Accepts positive and negative decimal values following a currency format. There is a property to
only permit non-negative values. Another property determines if the currency symbol is accepted and shown. It conforms
to the culture of the page (which can be overridden.)

 PercentTextBox – Handles integer and decimal percents. The percent symbol is optionally allowed.

See “IntegerTextBox Control”, “DecimalTextBox Control”, “CurrencyTextBox Control”, and “PercentTextBox Control”.

FilteredTextBox Overview
The PeterBlum.DES.FilteredTextBox prevents the user from entering invalid characters into a textbox. You specify
the set of characters that are valid or invalid.

It does not apply a pattern to the characters entered. Users can enter any character from the set of characters at any location
and for as many times as desired. Typically you will use a RegexValidator or the MultiSegmentDataEntry control to verify
that the text matches a pattern.

The CharacterValidator intelligently configures itself to the settings you assign to the FilteredTextBox so that you don’t have
to do it twice.

Some common uses of this control are:

 Password definition
 Person’s name (usually doesn’t have punctuation or numbers)
 Phone number
 Credit card number

The PeterBlum.DES.FilteredTextBox inherits all of the features of the PeterBlum.DES.TextBox.

See “FilteredTextBox Control”.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 15 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

MultiSegmentDataEntry Control Overview
Use the PeterBlum.DES.MultiSegmentDataEntry control as a substitute for a TextBox when you have a strongly
patterned data type. It is a similar idea to a masked textbox, where each character position requires a specific character. For
example, this control and masked textboxes are used to enter phone numbers, IP addresses, and dates (although the Peter’s
Date And Time module provides much better date entry with its own DateTextBox.)

While the masked textbox is one TextBox control with precise keyboard filtering, the MultiSegmentDataEntry control
defines multiple TextBoxes or DropDownLists, one for each “segment” of the data where the user types. Any static text, like
the period found between each segment of an IP address, is displayed between the segments and the user doesn’t have to type
it. This design has several advantages over the masked textbox:

 Browsers have a mixture of capabilities when it comes to handling typing at a particular position. To do it right, you
need to know the start and end index of the insertion point (when they are different, they user has selected some text).
Internet Explorer does not make this information available, although the Mozilla browsers do. Usually masked textboxes
for Internet Explorer can allow illegal cases as the user moves the insertion point within the existing text. The
MultiSegmentDataEntry control never has this problem. It does not need to know about the insertion point.

 Each segment’s textbox can have its own character set. For example, one can allow letters while another allows digits.

 Segments can offer a DropDownList, which is a very good user interface for having a limited set of choices, like the
months of the year.

 Individual segments know when you type a character that separates two segments, like the period between IP address
segments. They autotab to the next segment so the user can enter the text naturally, without worrying about the tab key.

 TextBoxes can have a maximum length that provides additional guidance to the user. Plus they can autotab when the
limit is hit.

 When working with integers, your textbox can offer spinners (up/down arrows) to change the value.

 Each segment can have its own Validator in addition to a master Validator for the entire text. For example, an IP address
needs a RangeValidator for values from 0 to 255 on each segment.

 Hints can be shown on the page as focus moves into a segment. So on-screen documentation is available.

All of these features help greatly improve the user’s experience so the user knows what to do and understands how to enter
patterned data without knowing the pattern in advance.

To make it work, the MultiSegmentDataEntry control has the ability to get and set single patterned string, splitting or joining
it according to rules that you specify. For example, on a phone number, the dash character is just formatting and the digits
found before and after a dash appear in different segments.

The MultiSegmentDataEntry control supports most of the existing Validators that evaluate textboxes. For example, if you set
it up for credit card numbers, you can use the CreditCardNumberValidator on it. Additionally, since each segment has rules
like text length, valid characters, and “requires text”, the MultiSegmentDataEntryValidator validates any pattern.

See “MultiSegmentDataEntry Control”.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 16 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Date and Time Entry TextBoxes
The Peter’s Date And Time module also provides some textboxes within the Peter’s Data Entry Suite. They are built
around date and time entry: DateTextBox, TimeOfDayTextBox, DurationTextBox, AnniversaryTextBox, and
MonthYearTextBox.

See Peter’s Date And Time User’s Guide.

Other Data Entry Controls
While HTML only defines a small group of data entry controls (inputs, textarea, select), developers have created a rich
collection of data entry tools, such as the ASP.NET calendar and RichTextBoxes. Peter’s Data Entry Suite only includes the
controls described above. However, it works well with most other controls because ASP.NET’s webcontrol concept allows
mixing controls from various sources.

Some notable data entry controls:

 Rich text boxes, which are textboxes that allow WYSIWIG entry, are available from several third parties. See
http://www.411asp.net/home/assembly/contentm.

 ComboBoxes, which are more powerful DropDownLists, are available from several third parties. The DES Validation
Framework includes support for EasyListBox and RadComboBox. See http://www.411asp.net/home/assembly/datalist

http://www.411asp.net/home/assembly/contentm�
http://www.easylistbox.com/�
http://www.telerik.com/�
http://www.411asp.net/home/assembly/datalist�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 17 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Enhanced TextBox Control
The Enhanced TextBox control (PeterBlum.DES.TextBox) is a substitute for the TextBox control included with
ASP.NET. It is a subclass of System.Web.UI.WebControls.TextBox. So it is fully compatible with all code that
already uses the ASP.NET TextBox. Due to its improved featureset, you are encouraged to use it wherever you use the
ASP.NET textbox. However, this is not a requirement. The rest of DES can use either the ASP.NET TextBox or
PeterBlum.DES.TextBox.

All other DES TextBoxes subclass from the Enhanced TextBox.

Click on any of these topics to jump to them:

 Features

 Using the Enhanced TextBox Control

 Getting and Setting the Value

 When the TextBox is Empty

 Validation on AutoPostBack

 Interactive Hints

 AutoComplete and “Smart Change System”

 Other Behaviors

 Adding an Enhanced TextBox

 Converting the ASP.NET TextBox to the Enhanced TextBox

 Properties for the Enhanced TextBox

If your data is one of these types, consider these alternatives to the TextBox:

Integer IntegerTextBox Control

Double or Decimal DecimalTextBox Control

Currency (using Double or Decimal type) CurrencyTextBox Control

Percentage (using Integer, Double, or Decimal) PercentTextBox Control

Textual with a specific character set FilteredTextBox Control

Textual with a strong pattern
(where a “mask” would apply)

MultiSegmentDataEntry Control

Date DateTextBox, AnniversaryTextBox, or MonthYearTextBox.

See the Date and Time User’s Guide.

Time of day TimeOfDayTextBox. See the Date and Time User’s Guide.

Duration DurationTextBox. See the Date and Time User’s Guide.

Fixed list of strings DropDownList or ListBox (from ASP.NET controls) or combobox from a
third party such as EasyListBox and RadControls.

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemWebUIWebControlsTextBoxClassTopic.asp�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 18 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Features
Enhanced TextBox (PeterBlum.DES.TextBox) is a descendant of the ASP.NET TextBox, and is intended to be used in
all places where you now use the ASP.NET TextBox. Consider converting your existing forms to it or one of the other DES
TextBoxes, as they all subclass from PeterBlum.DES.TextBox.

The Enhanced TextBox has several useful client-side extensions:

 The “Value When Blank” system lets you customize how blank textboxes are displayed. You can provide text like
“Please fill this in”.

 Supports the Interactive Hints feature from Peter’s Interactive Pages. Use the Hint property to display a hint as the user
tabs into the field. The hint is removed as tab departs the field. This feature requires a license for the Peter’s Interactive
Pages.

 Supports the Enhanced ToolTips feature from Peter’s Interactive Pages. This feature requires a license for the Peter’s
Interactive Pages.

 The AutoPostBack property has been extended to support client-side validation when using the DES Validation
Framework. It prevents a postback when there is an error.

 The DisableAutoComplete property lets you omit the Autocomplete list from the textbox. There are cases where
Autocomplete does not belong. Supported by several browsers.

 The DisablePaste property turns off the ability to paste on Internet Explorer and any other browser that supports the
client-side onpaste event.

 Auto tab to another control in several ways:

o Use the TabAtMaxLength property to tab when the text fills to the MaxLength.

o Use the TabOnEnterKey property to tab when the user types ENTER.

o Use the TabOnTheseChars to define a list of characters that tab when any are typed.

o Use the TabByArrowKeys to advance to the next or previous field when the left and right arrow keys hit the
end of text.

o Use the TabOnBackspace to tab to a previous field when the textbox is empty and the user types
BACKSPACE.

 Use the EnterSubmitsControlID property to specify a button that will be clicked when ENTER is typed. This feature
requires a license for the Peter’s Interactive Pages.

 Smarter detection of client-side “onchange” events. The client-side onchange event is a signal that the textbox has
changed after focus leaves the field. Validator controls and the TextBoxes that autoreformat rely on the onchange event.
However, browsers have two limitations that prevent them from firing the onchange event, even after a change is made:

o The browser’s Autocomplete feature does not cause it to fire. So users who pick from the Autocomplete list do
not get the immediate feedback of validation.

o When JavaScript assigns a new value to the textbox, it does not cause it to fire.

Enhanced TextBox installs code that always fires the onchange event when focus is lost and a change occurred.

 The TextAlign property lets you choose between left, center, and right alignment.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 19 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Using the Enhanced TextBox Control
As a direct subclass of System.Web.UI.WebControls.TextBox, you should use the documentation of that control
for many of its features including setting styles, the Text property, the AutoPostBack property and the TextChanged event.
See System.Web.UI.WebControls.TextBox Members for its complete list of properties, methods, and events.

Click on any of these topics to jump to them:

 Getting and Setting the Value

 When the TextBox is Empty

 Validation on AutoPostBack

 Interactive Hints

 AutoComplete and “Smart Change System”

 Other Behaviors

Getting and Setting the Value of the TextBox
When getting or setting the value, use the Text property.

When you need a server side event that is fired when the textbox’s value has changed, use the TextChanged event.

Data Entry Validation

Consider validation a manditory part of data entry. It prevents illegal entries from getting into your database. Also protect
yourself by setting up server side validation. Hackers often turn off javascript in their browser in hopes that your server side
code doesn’t protect against their illegal data.

See the Validation User’s Guide.

DES Validation Framework Guidelines

Determine if your textbox’s data needs some kind of validation:

 Are there any illegal characters? Use the CharacterValidator. (Also switch to the FilteredTextBox Control.)

 Is this data a candidate for a SQL Injection or Cross Site Scripting attack? Use the PageSecurityValidator or
FieldSecurityValidator. See Input Security User’s Guide for details.

 Is there a pattern to your data? Use the RegexValidator with an expression that confirms your pattern. Here is a great site
for popular patterns: http://regexlib.com.

 Is there a fixed list of values? Use the CompareToStringsValidator.

 Is there a minimum or maximum size restriction? Use the TextLengthValidator or TextLengthSecurityValidator.

Always set up server side validation. Test PeterBlum.DES.Globals.Page.IsValid in your postback event handler methods.
Only use the data if it is true.

Native Validation Framework Guidelines

Determine if your textbox’s data needs some kind of validation:

 Are there any illegal characters? Use a regular expression like this within a RegularExpressionValidator.

^[legal characters here]*$

^[^illegal characters here]*$

See http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:RegExp for regular expression
assistance.

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemWebUIWebControlsTextBoxClassTopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolstextboxmemberstopic.asp�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox.text.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox.textchanged.aspx�
http://regexlib.com/�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:RegExp�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 20 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Examples:

Only letters ^[A-Za-z]*$

Only digits ^[0-9]*$ or ^[\d]*$

Letters, digits,
underscore

^[A-Za-z\d_]*$ or ^[\w]*$

Letters, digits,
underscore, space, period

^[\w .]*$ (there is a space character between \w and period.)

All except letters ^[^A-Za-z]*$

All except space and
period

^[^ .]*$ (there is a space character between ^ and period.)

 Is this data a candidate for a SQL Injection or Cross Site Scripting attack? Build server side defenses to neutralize the
attack. See Input Security User’s Guide for details.

 Is there a pattern to your data? Use the RegexValidator with an expression that confirms your pattern. Here is a great site
for popular patterns: http://regexlib.com.

 Is there a fixed list of values? Use the RegexValidator with a pattern like this:

^((value1)|(value2)|(value3))$

A common error is to include characters that are special symbols in these values without demarking them with a lead \
character. These characters should have a lead slash: period (.), comma (,), ?, !, \, ^, $, *, -, +, left and right parenthesis,
brackets, curly braces,

 Is there a minimum or maximum size restriction? Use the RegularExpressionValidator with this expression:

^[\w\W]{minimum,maximum}$

^[\w\W]{maximum}$

^[\w\W]{minimum,}$

where minimum is an integer for the minimum value and maximum is an integer for the maximum value.

For example, a maximum of 40: ^[\w\W]{40}$

Always set up server side validation. Test Page.IsValid in your postback event handler methods. Only use the data if it is
true.

http://regexlib.com/�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 21 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

When the TextBox is Empty
Blank textboxes can show special text and/or a style sheet. Use the ValueWhenBlank property to provide text like “Please
fill this in”. Use the ValueWhenBlankCssClass property to change the a style sheet class. As the textbox gets focus, these
values can be removed based on the PeterBlum.DES.Globals.Page.ValueWhenBlankMode property. When focus leaves, if
the field is still blank, the text and style sheet class are restored.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 22 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Validation on AutoPostBack
If you use AutoPostBack, it now automatically validates before posting back except when AutoPostBackValidates is
false. This avoids posting back when there is a validation error. It can either evaluate the validators assigned to the textbox
are those in a specific group. When CausesValidation is false (requires ASP.NET 2 or higher), it evaluates the validators
assigned to the textbox. When CausesValidation is true, it evaluates validators identified by the ValidationGroup
property.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 23 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Interactive Hints
Note: Requires a license for the Peter’s Interactive Pages module.

You can show a hint on the page as the user tabs into the textbox. A hint is similar to a tooltip. However, a tooltip only
appears if the mouse is over the control. That is not the best way to communicate to the user as they are working in a textbox.

See the “Interactive Hints” section of the Interactive Pages User’s Guide for details.

Assign your hint text to the Hint property. If you are using a PopupView, it optionally offers a Help button which can show
additional text. That additional text is assigned to the HintHelp property.

The format of hints is determined by a PeterBlum.DES.HintFormatter object. You can either define one specific to
this control in the LocalHintFormatter property or specify the name of one shared by other controls in the
SharedHintFormatterName property. The HintFormatter determines where the hint is shown:

 PopupView or Label control. A PopupView is similar to a ToolTip, created with HTML
and Javascript to float near the control. It can be dragged and closed. It can be
customized with style sheets, images, and settings using the Global Settings Editor.

 In a tooltip

 In the browser’s status bar

Most of the work is done by creating a HintFormatter object. The PeterBlum.DES.HintFormatter class describes
how the hint text will be displayed. It provides its name, display mode - on the page or in a PopupView, if it’s also in the
tooltip and/or status bar, and more.

The HintManager object provides many page level properties that support this feature. (HintManager is a property of
PeterBlum.DES.Globals.Page and the PageManager control.) See the “Interactive Hints” section of the Interactive Pages
User’s Guide for details.

Click on any of these topics to jump to them:

 Setting Up Hints with PopupViews

 Setting Up Hints in a Label or Panel

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 24 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Setting Up Hints with PopupViews

1. Set the text of the hint in the Hint property. It can contain HTML tags if desired. If you are using the same text in the
ToolTip property, you do not need to assign anything to Hint. It uses the ToolTip property when Hint is "" unless you
set the HintManager.ToolTipsAsHints property to False.

2. If you are using the PopupView.HelpBehavior property, set the HintHelp property to the appropriate text, whether it is
a more detailed description, a title, a URL, or a script.

3. If you also want to show validation error messages (from the DES Validation Framework) in the PopupView, use the
HintManager.HintsShowErrors property. See the “Interactive Hints” section of the Interactive Pages User’s
Guide for details.

4. Review the available PopupView definitions. PopupView definitions are created and edited within the “PopupView
definitions for Hints” section of the Global Settings Editor. Each has a name, style sheets, images, width, and other
behaviors.

5. Pick a PopupView definition. Usually the width differs depending on the size of the Hint text.

6. Assign the PopupView using one of these three approaches:

 If you don’t need the hint shown in the browser’s status bar, just set the SharedHintFormatterName to the name of
the Popup View. DES automatically creates a HintFormatter for you with HintFormatter.DisplayMode and
HintFormatter.PopupViewName correctly set.

 You will need to use a HintFormatter object. If you can use the same PopupView definition name and HintFormatter
properties for several controls on this page, add a HintFormatter object to the
HintManager.SharedHintFormatters property. This can be done in the PageManager control or
programmatically.

o Set the HintFormatter.PopupViewName to the name of the PopupView.

o Set the HintFormatter.DisplayMode to Popup.

o Consider if these properties apply: InToolTip, InStatus, and TextFunctionName. (All others are used when
Display mode is not set to Popup.)

See the “Interactive Hints” section of the Interactive Pages User’s Guide for details.

 Otherwise, use the LocalHintFormatter property on the control:

o Set the HintFormatter.PopupViewName to the name of the PopupView.

o Set the HintFormatter.DisplayMode to Popup.

o Consider if these properties apply: InToolTip, InStatus, and TextFunctionName. (All others are used when
Display mode is not set to Popup.)

See the “Interactive Hints” section of the Interactive Pages User’s Guide for details.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 25 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Setting Up Hints in a Label or Panel

1. Determine what kind of appearance that you want for your hint. It can be simply a Label or a Panel whose formatting
encloses a Label and is fully hidden when there is no hint text to show. See the previous topic.

2. Determine the locations for hints. You can have one on the page, one for each group of controls, or even one for each
control. When you put one next to a control, it can be located where Validators appear as there is a feature to prevent the
hint from showing when a Validator is shown.

3. Add the controls for hints to the page. Remember that they will be hidden until focus is set to them.

4. If you are using a Panel that contains a Label, make sure the Label’s ID is Panel.ID + "_Text".

5. Determine whether you need a HintFormatter object for this control or one can be shared amongst several controls.
When using one specific to this control set up the HintFormatter object using the LocalHintFormatter property.

6. Otherwise, create the HintFormatter object in the HintManager.SharedHintFormatters property.

7. Set the SharedHintFormatterName property. When using HintManager.SharedHintFormatters, it should be the
name of the HintFormatter object or “{DEFAULT}” to use your global default. Otherwise it should be "".

8. Assign the Panel or Label control to the property HintFormatter.HintControlID.

9. Set the HintFormatter.DisplayMode to Static or Dynamic. Static will preserve the space of the Panel or Label
when it is hidden. Dynamic will not use any space when hidden.

10. If the Panel or Label appears at the same location as some Validators for this textbox, set
HintFormatter.HiddenOnError to true.

11. If you also want the hint text to appear in the status bar, set HintFormatter.InStatusBar to true.

12. Set the text of the hint in the Hint property. It can contain HTML tags if desired. If you are using the same text in the
ToolTip property, you do not need to assign anything to Hint. It uses the ToolTip property when Hint is "" unless you
set the HintManager.ToolTipsAsHints property to False.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 26 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

AutoComplete and “Smart Change System”
Without changing any properties, this textbox will immediately introduce the “smart change system”. This technology fires
the onchange event at times when the ASP.NET textbox won’t: after Internet Explorer’s AutoComplete feature is used and
after changing the value. Since the onchange event is used with client-side validation, it will immediately make DES’s
Validators fire after AutoComplete. You can also turn off the AutoComplete feature by setting the DisableAutoComplete
property to true.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 27 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Other Behaviors
Sometimes you do not want a field to allow pasting. For example, if the user is supposed to enter an email address twice to
confirm it is correct. The second email address textbox should not permit pasting an email address copied from the first field.
Set DisablePaste to true.

There are times when you want certain actions to tab to another field. DES provides several options for auto-tabbing. First set
the control to receive focus with the NextControlID property. Then use any or all of these properties to establish the desired
behavior: TabAtMaxLength, TabOnEnterKey, and TabOnTheseKeys. You can also auto-tab backward with the
TabOnBackspace property. Set the control to receive focus in the PreviousControlID property.

You can make the ENTER key click a button by setting the button’s control ID in the EnterSubmitsControlID property.

Note: EnterSubmitsControlID requires a license for the Peter’s Interactive Pages.

If you want to add your own JavaScript code to either of the onkeypress or onkeydown events, use the
CustomKeyPressFunctionName or CustomKeyDownFunctionName properties because the TextBox already uses those
events.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 28 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Adding an Enhanced TextBox
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Add a TextBox control to the page.

Visual Studio and Visual Web Developer Design Mode Users

Drag the TextBox control from the Toolbox onto your web form. Be sure to select DES’s TextBox, not
System.Web.UI.WebControls.TextBox.

Text Entry Users

Add the control (inside the <form> area):

<des:TextBox id="[YourControlID]" runat="server" />

Programmatically creating the TextBox control

 Identify the control which you will add the TextBox control to its Controls collection. Like all ASP.NET controls,
the TextBox can be added to any control that supports child controls, like Panel, User Control, or TableCell. If you
want to add it directly to the Page, first add a PlaceHolder at the desired location and use the PlaceHolder.

 Create an instance of the TextBox control class. The constructor takes no parameters.

 Assign the ID property.

 Add the TextBox control to the Controls collection.

In this example, the TextBox is created with an ID of “TextBox1”. It is added to PlaceHolder1.

[C#]

PeterBlum.DES.TextBox vTextBox = new PeterBlum.DES.TextBox();
vTextBox.ID = "TextBox1";
PlaceHolder1.Controls.Add(vTextBox);

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add a using clause to that namespace on your
form.

 [VB]

Dim vTextBox As PeterBlum.DES.TextBox = New PeterBlum.DES.TextBox()
vTextBox.ID = "TextBox1"
PlaceHolder1.Controls.Add(vTextBox)

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add an Imports clause to that namespace on
your form.

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

3. Set the properties associated with the TextBox. See “Properties for the Enhanced TextBox”.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 29 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

4. Assign Validators to the TextBox. Validators are an important part of data entry, guiding the user and protecting you
against hackers. See “Data Entry Validation”.

5. Get and set the value using the Text property.

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid (DES
validation framework) or Page.IsValid (native validation framework) is true.

6. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

 See also “Additional Topics for Using These Controls”.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox.text.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 30 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Converting the ASP.NET TextBox to the Enhanced TextBox
It takes very little to convert the System.Web.UI.WebControls.TextBox to PeterBlum.DES.TextBox. After
all, DES’s TextBox is a subclass of the other, so it is fully compatible. Your task is to change the namespace. You can either
follow the steps below or run the Web Application Updater program with its option “Convert native controls”.

1. In the ASP.NET Text, change <asp:TextBox> to <des:TextBox> and </asp:TextBox> to
</des:TextBox>.

2. Make sure this line is at the top of the webform or user control:

<%@ Register TagPrefix="des" Namespace="PeterBlum.DES"
Assembly="PeterBlum.DES" %>

3. In any code that declares the TextBox, change the namespace: System.Web.UI.WebControls.TextBox to
PeterBlum.DES.TextBox.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 31 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Properties for the Enhanced TextBox
This control is subclassed from System.Web.UI.Web.Controls.TextBox and inherits all of the members in
System.Web.UI.WebControls.TextBox Members. A few of the listed properties will be restated below.

Click on any of these topics to jump to them:

 Getting And Setting the Value Properties

 Editing Properties

 Behavior Properties

 Appearance Properties

 AutoPostBack Properties

 Value When Blank Properties

 ToolTip Properties

 Hint Properties

 Tab Rules Properties

 Client-Side Functions Properties

Getting And Setting the Value Properties
The Properties Editor shows these properties in the “Data” category.

 Text (string) – Gets and sets the value of this control. It is a string. See System.Web.UI.WebControls.TextBox.Text
Property.

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid (DES
validation framework) or Page.IsValid (native validation framework) is true.

If you need to convert between a string and another data type, consider these options:

o Integer – Use the IntegerTextBox. Get and set your integer on its IntegerValue property.

o Decimal – Use the DecimalTextBox. Get and set your integer on its DoubleValue property.

o Currency – Use the CurrencyTextBox. Get and set your integer on its DoubleValue property.

o Date – Use the DateTextBox in Peter’s Date and Time module. Get and set the DateTime object on its
DateValue property.

o Time - Use the TimeOfDayTextBox in Peter’s Date and Time module. Get and set the DateTime object on its
DateTimeValue property.

 TextChanged (event) – This event is fired on post back when the TextBox value has changed. See
System.Web.UI.WebControls.TextBox.TextChanged Event.

Note: This event only works when the ViewState is enabled on the TextBox.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolstextboxmemberstopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolstextboxclasstexttopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolstextboxclasstexttopic.asp�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox.textchanged(vs.71).aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 32 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Editing Properties
The Properties Editor shows these properties in the “Editing” category.

 TextMode (enum System.Web.UI.WebControls.TextBoxMode) – Determines if the textbox is singleline, multiline, or a
password. See “System.Web.UI.WebControls.TextBox.TextMode Property”. It defaults to SingleLine.

 MaxLength (Integer) – Establishes a maximum number of characters that the user can type into the textbox. It is not
supported when TextMode = MultiLine because the associated <textarea> tag does not offer any size constraint
attributes. Use a TextLengthValidator on a Multiline TextBox.

When 0, no limit is established. It defaults to 0.

 ReadOnly (Boolean) – When true, the control uses a ReadOnly state, where the user cannot change the text but can
tab into the field. While Enabled = false never permits posting back data, ReadOnly does. So if you use client-side
scripts to update the TextBox, choose this instead of Enabled. It defaults to false.

 ConvertCase (enum PeterBlum.DES.ConvertCase) – Converts the case of letters as they are typed on the client side. If
client-side code is not running, the server side will still apply the correct case.

The enumerated type PeterBlum.DES.ConvertCase has these values:

o No - Do not change the text

o Upper - Change letters to uppercase

o Lower - Change letters to lowercase

It defaults to ConvertCase.No.

Browsers use this feature in different ways. Internet Explorer is the only browser that replaces the characters as you type.
Other browsers update the textbox when focus is lost. Those without client-side scripting support will still apply the
desired type on the server side so that the Text property accurately reflects this property’s rule.

 DisableAutoComplete (Boolean) – Several browsers provide an “autocomplete” or “autofill” feature, where a list of
previous entries appears as the user starts typing. This behavior often is inappropriate as the browser is guessing what the
items are and its guess may be incorrect. For example, an integer textbox may still popup a list containing alphabetic
entries. These browsers offer the ability to disable autocomplete on a field-by-field basis. Set this to true to disable it
on this control. It defaults to false.

 AutoCompleteType (System.Web.UI.WebControls.AutoCompleteType) – See http://msdn2.microsoft.com/en-
us/library/system.web.ui.webcontrols.textbox.autocompletetype(VS.80).aspx.

 DisablePaste (Boolean) – When you prefer that the user cannot paste anything into the textbox, set this to true. It is
supported on Internet Explorer and any other browser that supports the 'onpaste' event. It defaults to false.

 EnterSubmitsControlID (string) – Use this when you want the ENTER key to click a specific button. The browser
already has rules for clicking a button when you type ENTER. That button usually has a special border to identify it to
the user. This property will override those rules. Here are cases where you will use EnterSubmitsControlID:

o Suppose that you have two groups of fields, each with its own submit button. Each textbox should use this to
point to its own submit button.

o Internet Explorer for Windows has the following strange behavior: if you have only one data entry control,
Internet Explorer submits the page without clicking the button first, causing it to skip any client-side validation.

Assign the ID of the submit control. It must be assigned to a control in the same or a parent naming container. If the
control is in another naming container, use EnterSubmitsControl.

This feature fires the click() method on the client-side control. click() automatically runs the control’s client-side
onclick event. In the case of a submit control, it submits the page after firing client-side validation. There are a lot of
controls that support click(), although they vary by browser. In addition to Buttons and ImageButtons, typical cases
are hyperlinks, LinkButtons, checkboxes and radiobuttons. However, browsers don’t all support the click() method
on the same control. Here are the differences:

o Internet Explorer and Opera 7 support it on hyperlinks (and LinkButton) while Mozilla and Safari do not.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolstextboxclasstextmodetopic.asp�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox.autocompletetype(VS.80).aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox.autocompletetype(VS.80).aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 33 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

o All support checkboxes and radiobuttons. However, Mozilla always removes the focus from the current field
even if you don’t set this feature up to move the focus (the focus is gone, not moved)

o All support Buttons the same way. This is the best choice for a control to click.

It defaults to "".

License Note: This property requires a license for the Peter’s Interactive Pages.

 EnterSubmitsControl (System.Web.UI.Control) – This is an alternative to EnterSubmitsControlID. It has the same
features as EnablerSubmitsControlID. It is assigned a reference to a control instead of an ID. As a result, it supports
controls in any naming container. It must be assigned programmatically.

When programmatically assigning properties to a TextBox control, if you have access to the submit control object, it is
better to assign it here than assign its ID to the EnterSubmitsControlID property because DES operates faster using
EnterSubmitsControl.

License Note: This property requires a license for the Peter’s Interactive Pages.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 34 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Behavior Properties
The Properties Editor shows these properties in the “Behavior” category.

 ChangeMonitorGroups (string) – When using the Change Monitor, the group names defined here are marked changed
when this control is edited. See “Change Monitor” in the Interactive Pages User’s Guide.

The value of "" is a valid group name.

For a list of group names, use the pipe character as a delimiter. For example: “GroupName1|GroupName2”. If one of the
groups has the name "", start this string with the pipe character: “|GroupName2”.

Use “*” to indicate all groups apply.

It defaults to "".

 InAJAXUpdate (Boolean) – When using AJAX on this page, set this to true if the control is involved in an AJAX
update. See “Using These Controls with AJAX” in the General Features Guide. It defaults to false.

 Enabled (Boolean) – When false, the control appears disabled and does not accept modifications. It defaults to true.

 Visible (Boolean) – When false, no HTML is output. This control is entirely unused. It defaults to true.

 DataTypeCheckReportsRangeErrors (Boolean) – Only on numeric textboxes with MinValue and MaxValue
properties. When a numeric textbox has MinValue or MaxValue properties assigned, data entry can produce either a
‘data type check’ error or an ‘out of range’ error.

Sometimes an out of range value can be considered a data type check error. For example, because a percentage is usually
a positive number, you might set MinValue to 0. Reporting “-10” as an illegal value will make sense to the user without
saying “The value -10 is out of range.” More often, it is better to evaluate the range condition separately with a
RangeValidator to let the user know explicitly by an error message that “The value is out of range.”

If you consider an out of range error to be just a data type check error and the DataTypeCheckValidator’s error message
is sufficient, set DataTypeCheckReportsRangeErrors to true and omit the RangeValidator. Then the
DataTypeCheckValidator, DataTypeCheckCondition, and CompareValidator will all report an error when the value
entered is a valid type but out of range.

When DataTypeCheckReportsRangeErrors is false, use a RangeValidator to report an out of range error.

It defaults to false.

 ViewStateMgr (PeterBlum.DES.ViewStateMgr) – Enhances the ViewState on this control to provide more optimal
storage and other benefits. Normally, the properties of this control and its segments are not preserved in the ViewState.
Just call ViewStateMgr.TrackProperty("propertyname") to record the property in the ViewState.

For more details, see “The ViewState and Preserving Properties for PostBack” in the General Features User’s
Guide.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 35 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Appearance Properties
The Properties Editor shows these properties in the “Appearance” category.

 BackColor, BorderColor, BorderStyle, BorderWidth, Columns, CssClass, Font, ForeColor, Height, Style,
TabIndex, and Width – These properties are described in System.Web.UI.WebControls.TextBox Members.

Recommendation: Create a style sheet class and assign it to the CssClass property. Generally you only assign Height
and Width on a case-by-case basis (although they can be put into style sheet classes).

 TextAlign (enum PeterBlum.DES.TextAlign) – By default, text is left justified in western cultures. Often users like to
right justify numeric values in textboxes, especially when stacking them. This property offers justification. It adds the
attribute style='text-align:value;' to the <input type='text'> tag.

Some browsers do not support the text-align style and will ignore this property.

The enumerated type PeterBlum.DES.TextAlign has these values:

o Default – This is the default. When set to Default, no style=text-align attribute is written, allowing the
style sheets of the page to manage it.

o Left

o Center

o Right

o Justify

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolstextboxmemberstopic.asp�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 36 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

AutoPostBack Properties
AutoPostBack allows an edit to immediately submit the page so that you can make changes to the page.

The Properties Editor shows these properties in the “AutoPostBack” category.

 AutoPostBack (Boolean) – When true, a change on the client-side will immediately submit the page. Usually you use
this with the TextChanged event to update some part of the page and redraw it with that change. Use the
AutoPostBackValidates or CausesValidation property to determine if it validates first. Use the
AutoPostBackTracksFocus property to preserve the focus on the last control with focus. It defaults to false.

Note: When using AJAX, the AJAX framework automatically makes a callback instead of a postback.

 AutoPostBackValidates (Boolean) – When true and AutoPostBack is true, before submitting, it validates the
textbox. If there are any errors, it does not submit. This avoids post back when the field has errors. It defaults to true.

 CausesValidation (Boolean) – ASP.NET 2.0 Only. When true and AutoPostBack is true, before submitting, it
evaluates all Validators in the validation group assigned to the ValidationGroup property. It is an alternative to
AutoPostBackValidates, which only evaluates the Validators assigned to this textbox. When CausesValidation is
true, AutoPostBackValidates is ignored. It defaults to false.

 ValidationGroup (string) – ASP.NET 2.0 Only. When CausesValidation and AutoPostBack are true, AutoPostBack
first validates all Validators in the validation group defined by this property. It defaults to "" (which is a valid validation
group name.)

 AutoPostBackTracksFocus (Boolean) – ASP.NET 2.0 Only. When AutoPostBack and AutoPostBackTracksFocus
are both true, the page will attempt to preserve the focus on the last field with focus before the page was submitted. It
defaults to false.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 37 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Value When Blank Properties
These properties establish how the textbox looks when it is blank. As focus is set on the textbox, you can have the look
change to its normal appearance using the PeterBlum.DES.Globals.Page.ValueWhenBlankMode property. As focus leaves
the textbox, if it is still blank it will resume using these properties.

The Properties Editor shows these properties in the “Value When Blank” category.

 ValueWhenBlank (string) – When the TextBox is empty, it is reassigned to this value. For example, “Please fill in this
field”. On the client-side, as focus is set to this field, the value will be restored to empty if the
PeterBlum.DES.Globals.Page.ValueWhenBlankMode property is RemoveText or RemoveBoth. As focus leaves
this field, when the field value is "", ValueWhenBlank is reassigned.

When this property is "", no changes are made to the value of the TextBox.

It defaults to "".

When the field is posted back, if the value posted back was ValueWhenBlank, the Text property will return "". So this
value is hidden from you and is only used to communicate with the user. DES’s Validators will also recognize the
ValueWhenBlank text as a blank textbox.

 ValueWhenBlankCssClass (string) – When the TextBox is empty and this is assigned, the style sheet class name of the
TextBox is assigned to this value. Use it to give the TextBox a different appearance when it is blank. This can help direct
users to fields that they need to fill in. On the client-side, as focus is set to this field, the original style sheet class name
will be restored to empty if the PeterBlum.DES.Globals.Page.ValueWhenBlankMode property is RemoveText or
RemoveBoth. As focus leaves this field, when the field value is "", this class name is reassigned.

Note: This property is only used when client-side scripting is available.

Note: If the TextBox is invalid due to a validator assigned to it, the PeterBlum.DES.Globals.Page.ControlErrorCssClass
property takes precedence over ValueWhenBlankCssClass. So a blank field with an error will show
PeterBlum.DES.Globals.Page.ControlErrorCssClass when that property is set up.

You can set up a global value for this control using the DefaultValueWhenBlankCssClass property within the Global
Settings Editor. Once established, assign this property to “{DEFAULT}” to use that default.

To merge your style sheet with the current style sheet class, put a plus (“+”) character first. For example,
“+MyClassName”. Your style sheet class’s attributes will override any attributes that it shares with the original class.
The DefaultValueWhenBlankCssClass property can also start with “+” to have this effect.

When this property is "", no style sheet class name is assigned for a blank field.

It defaults to "".

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 38 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

ToolTip Properties
The Properties Editor shows these properties in the “ToolTip” category.

Note: The terms “Hint” and “ToolTip” both describe ways to provide documentation to the user. A Hint displays the
message when focus enters the field and is best for data entry controls. A ToolTip displays the message when the mouse
points to the control. It can be used on almost any type of control.

 ToolTip (string) – When assigned, a tooltip with this text is shown when the user points to the textbox. If you are using
the Hint feature, it can be used as the hint when the Hint property is "". When using the “Enhanced ToolTips” feature,
the browser’s tooltip will be replaced by a PopupView. See the Interactive Pages User’s Guide.

 ToolTipLookupID (string) – Gets the value for ToolTip through the String Lookup System. (See “String Lookup
System” in the General Features Guide.) The LookupID and its value should be defined within the String Group of
Hints. If no match is found OR this is blank, ToolTip will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 ToolTipUsesPopupViewName (string) – When using the “Enhanced ToolTips” feature, this determines which
PopupView definition is used. For details on Enhanced ToolTips, see the Interactive Pages User’s Guide.

Specify the name from the PopupView definition or use the token “{DEFAULT}” to select the name from the global
setting DefaultToolTipPopupViewName, which is set with the Global Settings Editor.

A PopupView definition describes the name, style sheets, images, behaviors, and size of a PopupView. Use the Global
Settings Editor to create and edit these PopupView definitions in the “PopupView definitions used by the
HintManager” section.

Tooltips are only converted to PopupViews when HintManager.EnableToolTipsUsePopupViews is True.
(HintManager is accessed programmatically through PeterBlum.DES.Globals.Page and in the PageManager control.)

Here are the predefined values: LtYellow-Small, LtYellow-Medium, LtYellow-Large, ToolTip-Small,
ToolTip-Medium, and ToolTip-Large. All of these are light yellow. Their widths vary from 200px to 600px.
Those named “ToolTip” have the callout feature disabled. Those named “LtYellow” have the callout feature enabled.

It defaults to “{DEFAULT}”.

Note: When the name is unknown, it also uses the factory default. This allows the software to operate even if a
PopupView definition is deleted or renamed.

Note: When the HintManager.ToolTipsAsHints feature is enabled, anything other than “” or “{DEFAULT}” assigned to
ToolTipUsesPopupViewName will prevent the ToolTip text from being assigned as a Hint. You must explicitly assign the
Hint text if you want the tooltip and hint to share the same text.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 39 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Hint Properties
License Note: This feature requires a license for the Peter’s Interactive Pages.

For an overview, see “Interactive Hints”.

The Properties Editor shows these properties in the “Hint” category.

Note: The terms “Hint” and “ToolTip” both describe ways to provide documentation to the user. A Hint displays the
message when focus enters the field and is best for data entry controls. A ToolTip displays the message when the mouse
points to the control. It can be used on almost any type of control.

 Hint (string) – When using the Interactive Hints system, this is the text of the hint.

When blank, if the TextBox is using its ToolTip property, the ToolTip is used as the text of the hint unless you set the
HintManager.ToolTipsAsHints property to False.

HTML tags are permitted. ENTER and LINEFEED characters are not. Use the token “{NEWLINE}” where you need a
linefeed.

When the hint is shown in the browser's status bar, HTML tags will automatically be stripped.

It defaults to "".

 HintLookupID (string) – Gets the value for Hint through the String Lookup System. (See “The String Lookup System”
in the General Features Guide.) The LookupID and its value should be defined within the String Group of Hint. If no
match is found OR this is blank, Hint will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 HintHelp (string) – When the Hint uses a PopupView, this provides data for use by the Help Button and other features
on the PopupView. Its use depends on the PopupView.HelpBehavior property. (The PopupView is determined by the
HintFormatter with its PopupViewName property.)

The PopupView has an optional Help button. When setup, the user can click it to bring up additional information, such
as a new page of help text.

Here is how to use the HintHelp based on PopupView.HelpBehavior:

o None - Do not show a Help Button. The HintHelp property is not used.

o ButtonAppends - Add the text from HintHelp after the existing message. Use
PopupView.AppendHelpSeparator to separate the two parts. When clicked, the Help button disappears and
the message box is redrawn.

o ButtonReplaces - Replace the text in the message with the HintHelp. When clicked, the Help button
disappears and the message box is redrawn.

o Title - The text appears in the header as the title. It replaces the PopupView.HeaderText. There is no Help
Button. If HintHelp is blank, PopupView.HeaderText is used.

o Hyperlink - Provide a Hyperlink. The Help Info text will appear in the "{0}" token of
PopupView.HyperlinkUrlForHelpButton.

For example, the HyperlinkUrlForHelpButton property may be "{0}" and this property is the complete URL
"/helpfiles/helptopic1000.aspx".

Another example uses the token for just a querystring parameter, like this: HyperlinkUrlForHelpButton =
"/gethelp.aspx?topicid={0}" and this property contains the number of the ID.

o HyperlinkNewWindow - Provide a Hyperlink that opens a new window. The HintHelp text will appear in
the “{0}” token of PopupView.HyperlinkUrlForHelpButton.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 40 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

o ButtonRunsScript - Runs the script supplied in PopupView.ScriptForHelpButton. The HintHelp text
will replace the token “{0}” in that script.

This defaults to "".

 HintHelpLookupID (string) – Gets the value for HintHelp through the String Lookup System. (See “The String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of Hint. If no match is found OR this is blank, HintHelp will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 SharedHintFormatterName (string) – Specify the name of the desired HintFormatter object found in
HintManager.SharedHintFormatters. (HintManager is accessed programmatically through
PeterBlum.DES.Globals.Page and in the PageManager control.) Alternatively, specify the name of a PopupView
defined in the “PopupView definitions used by HintFormatters” of the Global Settings Editor.

The PeterBlum.DES.HintFormatter class describes how the hint text will be displayed. It provides its name,
display mode - on the page or in a PopupView, if it’s also in the tooltip and/or status bar, and more.

The HintManager.SharedHintFormatters property defines various ways to display a hint with
PeterBlum.DES.HintFormatter objects. It lets you share a HintFormatter definition amongst controls on this
page. It not only makes changes to the HintFormatter quick, but it also reduces the JavaScript output. If you want to
create a HintFormatter specific to this control, set SharedHintFormatterName to "" and edit the properties of
LocalHintFormatter (see below).

If you specify the name of a PopupView and there is a definition with that name, a HintFormatter is automatically added
to HintManager.SharedHintFormatters with its name matching the name of the PopupView. This is an easy way to
work with PopupViews without the extra step of setting up HintFormatters. The HintFormatter defined will also show
the hint as a tooltip but it will not show the hint in the status bar. If you need more control over the HintFormatter’s
properties, you must create the HintFormatter yourself.

See the “Interactive Hints” section of the Interactive Pages User’s Guide for details on the
PeterBlum.DES.HintFormatter class and setting up HintManager.SharedHintFormatters.

Use the token "{DEFAULT}" to get the name from HintManager.DefaultSharedHintFormatterName.

It defaults to “{DEFAULT}”.

 LocalHintFormatter (PeterBlum.DES.HintFormatter) – When none of the HintFormatter objects defined in
HintManager.SharedHintFormatters is appropriate, use this property. (HintManager is accessed programmatically
through PeterBlum.DES.Globals.Page and in the PageManager control.)

The PeterBlum.DES.HintFormatter class describes how the hint text will be displayed. It provides its display
mode - on the page or in a PopupView, if it’s also in the tooltip and/or status bar, and more. See the “Interactive Hints”
section of the Interactive Pages User’s Guide for directions on using the PeterBlum.DES.HintFormatter
class.

You must set SharedHintFormatterName to "" for this to be used.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 41 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Tab Rules Properties
These properties support special forms of tabbing to another control. These features are only available on the client-side.
When the browser does not support client-side scripts or PeterBlum.DES.Globals.Page.JavaScriptEnabled is false,
these features have no effect.

The Properties Editor shows these properties in the “Tab Rules” category.

 NextControlID (string) – Sets up special tabbing to another control together with one or more of these properties:
TabAtMaxLength, TabOnEnterKey, TabByArrowKeys, and TabOnTheseKeys. Specifies the ID to a control that
will receive focus when one of the special tabbing features is detected.

Use it when the next control is in the same or any parent naming container. If it’s in another naming container, use
NextControl.

If assigned to an unknown control ID or one in an incorrect naming container, an exception will be thrown at runtime.

When "", special tabbing is not set up. It defaults to "".

 NextControl (System.Web.UI.Control) – This is an alternative to NextControlID. It has the same features as
NextControlID. It is assigned a reference to a control instead of an ID. As a result, it supports controls in any naming
container. It must be assigned programmatically.

When programmatically assigning properties to a TextBox control, if you have access to the next control object, it is
better to assign it here than assign its ID to the NextControlID property because DES operates faster using
NextControl.

 PreviousControlID (string) – Sets up special tabbing to another control together with one or more of these properties:
TabOnBackspace and TabByArrowKeys. Specifies the ID to a control that will receive focus when one of the special
tabbing features is detected.

Use it when the Previous control is in the same or any parent naming container. If it’s in another naming container, use
PreviousControl.

If assigned to an unknown control ID or one in an incorrect naming container, an exception will be thrown at runtime.

When "", special tabbing is not set up. It defaults to "".

 PreviousControl (System.Web.UI.Control) – This is an alternative to PreviousControlID. It has the same features as
PreviousControlID. It is assigned a reference to a control instead of an ID. As a result, it supports controls in any
naming container. It must be assigned programmatically.

When programmatically assigning properties to a TextBox control, if you have access to the Previous control object, it is
better to assign it here than assign its ID to the PreviousControlID property because DES operates faster using
PreviousControl.

 TabAtMaxLength (Boolean) – When NextControlID and MaxLength are set, it will automatically tab to the next
control when the number of characters entered reaches MaxLength. It only works on a SingleLine textbox.

When true, it is enabled but it will do nothing unless NextControlID and MaxLength are both set. It defaults to
true.

 TabByArrowKeys (Boolean) – Determines if the arrow keys move focus to the NextControlID or PreviousControlID
when the cursor reaches the text limit.

Focus will move to NextControlID when the user types a right arrow at the end of the current text.

Focus will move to PreviousControlID when the user types a left arrow at the start of the current text.

It only works on a SingleLine textbox.

It defaults to true.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 42 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 TabOnBackspace (Boolean) – Determines if focus will move to the PreviousControlID when the user types a
backspace into an empty textbox.

It only works on a SingleLine textbox.

It defaults to false.

 TabOnEnterKey (Boolean) – When NextControl is set and this is true, set focus to it when the ENTER key is
pressed.

Supported by Multiline fields as well as single line fields.

It defaults to false.

Be aware of these issues:

o It prevents ENTER from clicking the default button on the page. However, if you use the
EnterSubmitsControlID property, EnterSubmitsControlID overrides this property.

o Multiline fields may support ENTER as a valid character. This prevents the ability to type ENTER into the text.

 TabOnTheseKeys (string) – When NextControlID is set, set focus to it when any character in this property is pressed.

This feature is designed to let users type separator characters between textboxes such as the ")" after a textbox for the
area code of a phone number.

Use TabOnEnterKey to specify the ENTER key.

When "", the feature is disabled.

It defaults to "".

The space character is legal along with any other character. Be very careful to select keys that you don't want entered
because it will not enter any of these (unless client-side scripting is disabled).

It never tabs when the textbox is empty to allow characters being entered from the previous textbox that uses autotabbing
to be discarded. For example, if you have a phone number of three segments, the user may hit ")" to jump from the first
textbox to the second. They also may type ")[space]". That space could be in TabOnTheseKeys for the second textbox
and cause it to tab again. When the 2nd textbox is empty, the [space] is abandoned.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 43 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Client-Side Functions Properties
The Enhanced TextBox utilizes the client-side onkeypress and onkeydown events. These properties let you incorporate your
own code into DES’s onkeypress and onkeydown events.

The Properties Editor shows these properties in the “Tab To Next Control” category.

 CustomKeyPressFunctionName (string) – Use this property to insert your own client-side code into the onkeypress
event. You can use this code to run your own custom commands and even filter out a character if desired.

The onkeypress event is the best place to handle all of the keys that can appear in the textbox while the onkeydown event
is often better for cursor movement keys. For onkeydown events, see CustomKeyDownFunctionName.

Always use this instead of modifying the onkeypress event directly because the TextBox uses the onkeypress event and
needs to return true or false to handle filtering.

You must define a JavaScript function with three parameters and return a boolean value. Your function is called for each
keystroke passed on the onkeypress event. The CustomKeyPressFunctionName property is assigned to the function
name.

The parameters are:

o Fld - The object representing the textbox element.

o Event - The event object. Use it to get additional information about the keystroke like modifier keys. You don't
need to get the keycode from it due to the next parameter.

o KeyCode - An integer containing the keycode of the key typed. Use this to determine what action to take.

Return true if the keystroke should continue to be processed by the TextBox's code. Return false if the keystroke has
been used and should not be used by any of the TextBox's code and it should be filtered out.

function FunctionName(pFld, pEvent, pKeyCode)
{
 // evaluate pKeyCode
 if (allow_the_KeyCode)
 return true;
 else
 return false;
}

Your code needs to be declared on the page. See “Adding Your JavaScript to the Page”.

Define the name of the function in this property. If "", no function is defined.

It defaults to "".

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

 CustomKeyDownFunctionName (string) – Use this property to insert your own client-side code into the onkeydown
event. You can use this code to run your own custom commands and even filter out a character if desired.

The onkeypress event is the best place to handle all of the keys that can appear in the textbox while the onkeydown event
is often better for cursor movement keys. For onkeypress events, see CustomKeyPressFunctionName.

Always use this instead of modifying the onkeydown event directly because the TextBox uses the onkeypress event and
needs to return true or false to handle filtering.

You must define a JavaScript function with three parameters and return a boolean value. Your function is called for each
keystroke passed on the onkeypress event. The CustomKeyDownFunctionName property is assigned to the function
name.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 44 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

The parameters are:

o Fld - The object representing the textbox element.

o Event - The event object. Use it to get additional information about the keystroke like modifier keys. You don't
need to get the keycode from it due to the next parameter.

o KeyCode - An integer containing the keycode of the key typed. Use this to determine what action to take.

Return true if the keystroke should continue to be processed by the TextBox's code. Return false if the keystroke has
been used and should not be used by any of the TextBox's code and it should be filtered out.

function FunctionName(pFld, pEvent, pKeyCode)
{
 // evaluate pKeyCode
 if (allow_the_KeyCode)
 return true;
 else
 return false;
}

Your code needs to be declared on the page. See “Adding Your JavaScript to the Page”.

Define the name of the function in this property. If "", no function is defined.

It defaults to "".

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 45 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

IntegerTextBox Control
The PeterBlum.DES.IntegerTextBox is a TextBox designed for integer data entry. It knows how to convert an
integer into text and back. It has properties to determine if it supports negative numbers and the thousands separator. You can
add a spinner control for the user to increment the integer.

Note: If you need a control to enter a number that is treated like a string, such as an account number, consider using the
FilteredTextBox, with a filter that limits the text to digits.

Click on any of these topics to jump to them:

 Features

 Using the IntegerTextBox

 Getting and Setting the Value of the TextBox

 Formatting The Text

 Adding A Spinner

 Connecting Data To Other Fields On The Client-Side

 When the TextBox is Empty

 Validation on AutoPostBack

 Interactive Hints

 AutoComplete and “Smart Change System”

 Other Behaviors

 Adding a IntegerTextBox

 Properties for the IntegerTextBox

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 46 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Features
Use demos here: http://www.peterblum.com/DES/DemoTextBoxes.aspx.

 It subclasses from PeterBlum.DES.TextBox, inheriting all of its qualities. See “Enhanced TextBox”.

 Accepts positive and negative integers. There is a property to only permit non-negative values.

 Get and set the value of the textbox using an integer data type instead of a string, avoiding you having to write
conversion code.

 Set a property to allow or prevent entry of negative numbers.

 It is culture sensitive, respecting the CultureInfo object defined on the PeterBlum.DES.Globals.Page.CultureInfo
property.

 On the client-side, it filters keystrokes so users can only enter characters suitable to for integer entry.

 On the client-side, it reformats if needed as the user exits the textbox. For example, if the user enters “1000”, it reformats
to “1,000” (when showing the optional thousands separator.)

 When you attach a Validator to them, the Validator automatically configures itself to evaluate an integer with the other
data entry rules specified on this control.

 Use a spinner control (up and down arrows to the right of the textbox) to increment the value.

 Use up and down arrow keys to increment the value.

http://www.peterblum.com/DES/DemoTextBoxes.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 47 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Using the IntegerTextBox
Use demos here: http://www.peterblum.com/DES/DemoTextBoxes.aspx.

The PeterBlum.DES.IntegerTextBox is subclassed from PeterBlum.DES.TextBox, which is an enhanced
version of the TextBox control supplied with ASP.NET. If you know how to use the ASP.NET TextBox, you already know
how to use this control. See “Using the Enhanced TextBox Control”.

Click on any of these topics to jump to them:

 Getting and Setting the Value of the TextBox

 Formatting The Text

 Adding A Spinner

 Connecting Data To Other Fields On The Client-Side

The following topics are inherited from DES’s TextBox control:

 When the TextBox is Empty

 Validation on AutoPostBack

 Interactive Hints

 AutoComplete and “Smart Change System”

 Other Behaviors

http://www.peterblum.com/DES/DemoTextBoxes.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 48 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Getting and Setting the Value of the TextBox
When getting or setting the value, use the IntegerValue property instead of the Text property. These properties convert your
integer or double into the localized text shown in the textbox.

Note: This control uses 32 bit integers to represent values. As a result, it has a range of -2,147,483,648 to 2,147,483,648.
Values outside of this range are treated as errors. The DataTypeCheckValidator respects this and reports an error on values
outside of the range.

If you are using DataBinding, consider these alternative properties: IntegerBindable, IntegerOrZero, and IntegerNullable.

By default, negatives are not permitted. If allow negative percentages, set AllowNegatives to true. The
DataTypeCheckValidator will respect this setting and report an error when a negative number is found.

You can check for a blank textbox by checking the IsEmpty property for true. The IntegerTextBox also contain an invalid
entry, such as an illegal characters or badly formatted entry. You can check for an invalid entry by checking the IsValid
property for false, although a validator should avoid having to test for an invalid value.

When you need a server side event that is fired when the textbox’s value has changed, use the TextChanged event.

Data Entry Validation

Consider validation a manditory part of data entry, whether it’s an IntegerTextBox or just an ordinary textbox. It prevents
illegal entries from getting into your database. Even if the IntegerTextBox enforces some rules for you, users may not have a
browser that supports the client-side code for the IntegerTextBox, or its validators for that matter. Hackers often turn off
javascript in their browser in hopes that your server side code doesn’t protect against their illegal data.

Validation Guidelines:

 At minimum, validate the percentage number format with one of these validators.

o When using the DES Validation Framework, assign a DataTypeCheckValidator to each IntegerTextBox. (See
the Validation User’s Guide.)

o When using the Native Validation Framework, use DES’s CompareValidator with the Operator property set to
DataTypeCheck. (This validator is in the PeterBlum.DES.NativeValidators assembly. If you haven’t
done so, add this assembly to its own tab in the Visual Studio/VWD toolbox. See the Installation Guide for
details.) See “Validation with the Native Validation Framework”.

 Set up server side validation.

o When using DES’s validation framework, test PeterBlum.DES.Globals.Page.IsValid in your postback event
handler methods. Only use the data if it is true.

o When using the native validation framework, test Page.IsValid in your postback event handler. Only use the
data if it is true.

 You can establish a numeric range to prevent selection outside the range using MinValue and MaxValue. Add the
RangeValidator to report errors when the user types numbers outside the range. DES provides two RangeValidators, one
for its own validation framework and the other for the native validation framework. Choose the correct one. Do not use
the original RangeValidator that comes with ASP.NET.

Alternatively, if you feel an out of range value can be reported under the error message from your
DataTypeCheckValidator (or CompareValidator in the Native Validation Framework), set the
DataTypeCheckReportsRangeErrors to true.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox.textchanged.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 49 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Formatting The Text
DES uses the System.Globalization.CultureInfo class to define numeric formatting rules. You establish the desired
CultureInfo on the PeterBlum.DES.Globals.Page.CultureInfo property. Integers get the following values from
CultureInfo.NumberFormat:

 Thousands separator from CultureInfo.NumberFormat.NumberGroupSeparator.

 Negative number format from CultureInfo.NumberFormat.NumberNegativePattern.

If you want to show thousands separators, set ShowThousandsSeparator to true.

Use the CalculationController (part of the DES: Client-side Toolkit) to perform math based on these textboxes. See the
Peter’s Interactive Pages User’s Guide.

http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo(vs.71).aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 50 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Adding A Spinner
A Spinner is a control with two arrows that appear to the right of the textbox. For example:

When the user clicks on an arrow, it increments or decrements the value. If they hold down the button, it repeatedly changes
the value and after 5 cycles, its speed increases.

To use the Spinner, set ShowSpinner to true. Use the SpinnerManager object to change the URL to the arrow button
images and the auto repeat speed. (SpinnerManager is a property of PeterBlum.DES.Globals.Page and the PageManager
control.)

Note: Spinners are only supported on these browsers: IE Windows 5+, Netscape 7+, Mozilla 1.1+, FireFox, Opera 7+, and
Safari.

If you have client-side code that shows or hides the textbox, call the function DES_Refresh() to tell DES to change the
visibility of the spinners. This is handled automatically when using the FieldStateController.

When the spinner is shown, the control attempts to keep the spinner side-by-side with the textbox by enclosing the two
elements in either a or <table> tag, depending on the browser. If you want to remove the enclosure, set
ContainerMode to None.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 51 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Connecting Data To Other Fields On The Client-Side
Often users want to update other textboxes and labels when a value is changed in an IntegerTextBox. Use the
CalculationController to perform math based on these textboxes. It can update a textbox or label for you. See the Peter’s
Interactive Pages User’s Guide.

For other situations, write your own client-side JavaScript code. DES supplies a number of JavaScript functions to greatly
simplify working with the PercentTextBoxes on the client-side. See “JavaScript Support Functions”.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 52 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Adding a IntegerTextBox
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Add an IntegerTextBox control to the page.

Visual Studio and Visual Web Developer Design Mode Users

Drag the IntegerTextBox control from the Toolbox onto your web form.

Text Entry Users

Add the control (inside the <form> area):

<des:IntegerTextBox id="[YourControlID]" runat="server" />

Programmatically creating the IntegerTextBox control

 Identify the control which you will add the IntegerTextBox control to its Controls collection. Like all ASP.NET
controls, the TextBox can be added to any control that supports child controls, like Panel, User Control, or
TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location and use the
PlaceHolder.

 Create an instance of the IntegerTextBox control class. The constructor takes no parameters.

 Assign the ID property.

 Add the IntegerTextBox control to the Controls collection.

In this example, the IntegerTextBox is created with an ID of “IntegerTextBox1”. It is added to PlaceHolder1.

[C#]

PeterBlum.DES.IntegerTextBox vTextBox = new PeterBlum.DES.IntegerTextBox();
vTextBox.ID = "IntegerTextBox1";
PlaceHolder1.Controls.Add(vTextBox);

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add a using clause to that namespace on your
form.

 [VB]

Dim vTextBox As PeterBlum.DES.IntegerTextBox = _
 New PeterBlum.DES.IntegerTextBox()
vTextBox.ID = "IntegerTextBox1"
PlaceHolder1.Controls.Add(vTextBox)

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add an Imports clause to that namespace on
your form.

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

3. Set the properties associated with the IntegerTextBox. See “Properties for the IntegerTextBox”.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 53 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

4. Assign Validators to the TextBox.

Using DES Validation Framework

See the Validation User’s Guide for details on these validators.

 Always add the DataTypeCheckValidator to block formatting errors.

 Add a RangeValidator when you are using the MinValue and MaxValue properties.

 If you have two IntegerTextBoxes where one needs to be greater, less than, equal or not equal to the other, add a
CompareTwoFieldsValidator.

 If you have two IntegerTextBoxes where one must be greater or less than the other by a specific number, add a
DifferenceValidator. Specify the number in the DifferenceValue property.

 Be sure that server side validation has been correctly setup.

Using Native Validation Framework

These validators are found in the PeterBlum.DES.NativeValidators assembly. Do not use the original
CompareValidator and RangeValidator that come with ASP.NET because they don’t handle the rich data entry formats
of the PercentTextBox. See “Validation with the Native Validation Framework”.

 Always add the CompareValidator with its Operator set to DataTypeCheck to block formatting errors.

 Add a RangeValidator when you are using the MinValue and MaxValue properties.

 If you have two IntegerTextBoxes where one needs to be greater, less than, equal or not equal to the other, add a
CompareValidator. Set its ControlToValidate property to the start IntegerTextBox and ControlToCompare
property to the end IntegerTextBox.

 If you have two IntegerTextBoxes where one must be greater or less than the other by a specific number, add the
DifferenceValidator.

 Be sure that server side validation has been correctly setup.

5. Get and set the value using the IntegerValue property. When databinding, use IntegerBindable.

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid (DES
validation framework) or Page.IsValid (native validation framework) is true.

6. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

 See also “Additional Topics for Using These Controls”.

Use demos here: http://www.peterblum.com/DES/DemoTextBoxes.aspx.

http://www.peterblum.com/DES/DemoTextBoxes.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 54 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Properties for the IntegerTextBox
Most of the properties are inherited from Enhanced TextBox (see “Properties for the Enhanced TextBox”) and the ASP.NET
TextBox (see “System.Web.UI.WebControls.TextBox Members”).

Click on any of these topics to jump to them:

 Getting And Setting The Value Properties

 Editing Properties

 Formatting Properties

 Spinner Properties

The following topics are inherited from DES’s TextBox control:

 Editing Properties

 Behavior Properties

 Appearance Properties

 AutoPostBack Properties

 Value When Blank Properties

 ToolTip Properties

 Hint Properties

 Tab Rules Properties

 Client-Side Functions Properties

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolstextboxmemberstopic.asp�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 55 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Getting And Setting The Value Properties
There are numerous ways to get and set the numeric value of this textbox. Choose the best one for your needs.

Some of these properties are hidden from the Properties Editor as they are only intended to be used programmatically. When
shown, they appear under the “Data” Category.

 IntegerValue (integer) – Gets and sets the value for this control using a System.Int32 value. You generally access
this property programmatically. This property is preferred over using the Text property. However, you can get and set
the value on the Text property so long as you handle the conversion between string and Int32.

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid (when using
a DataTypeCheckValidator) or its own IsValid property is true.

Note: If you attempt to get a value from IntegerValue when the text is incorrectly formatted, you will get a
System.FormatException thrown.

You can set the textbox value to "" either by assigning Text = "" or IntegerValue = System.Int32.MinValue or
call SetEmpty().

 IntegerValueOrZero (integer) – An alternative to IntegerValue that returns a value even if the text is blank or not a
valid number. When it’s blank or an invalid entry, it returns a value of 0. This is a read-only property.

 IntegerBindable (object) – An alternative to IntegerValue designed for handling multiple types. It accepts either a byte,
sbyte, int16, int32, SqlInt16, SqlInt32, null, string, or System.DbNull.Value.

It returns an integer (System.Int32) or Sql32 depending on BindableMode.

It is preferred when using DataBinding, due to its flexibility with data types.

When evaluating a string, the format must represent an integer value respecting the culture formatting of
PeterBlum.DES.Globals.Page.CultureInfo.

 BindableMode (enum PeterBlum.DES.BindMode) – Determines how the IntegerBindable property returns its value, as
either an Integer (32 bit) or SqlInteger.

o Normal – Returns an Integer when the textbox is valid or null/nothing when the textbox is blank or has an
illegal value. This is the default value.

o SqlTypes – Returns a System.Data.SqlTypes.SqlInteger when the textbox is valid or
2System.DBNull.Value when the textbox is blank or has an illegal value.

o TwoWay – Use this when you are using System.Web.UI.WebControls.SqlDataSource and other
DataSource web controls to implement two-way databinding. Returns an Integer when the textbox is valid or
null/nothing when the textbox is blank or has an illegal value.

 IntegerNullable (integer) – Requires ASP.NET 2 or higher. Read only. An alternative to IntegerValue that accepts
either an integer (System.Int32) or null/nothing. When using null/nothing, it clears the textbox.

 IsValid (Boolean) – Determines if the contents of the TextBox represent an integer. It returns true when it does
represent an integer. It always returns false when the Text property is blank (after trimming). Consider using a
DataTypeCheckValidator instead of this property. This is a read-only property.

 IsEmpty (Boolean) – Determines if the text is blank (after trimming). You should not attempt to get the field's value
when this returns true because a blank textbox has no value. Consider adding a RequiredTextValidator to this control
to prevent getting blank text fields. This is a read-only property.

 IntegerValueOrZero (integer) – An alternative to IntegerValue that returns a value even if the text is blank or not a
valid number. When it’s blank or an invalid entry, it returns a value of 0. This is a read-only property.

http://msdn2.microsoft.com/en-us/library/ms227679�
http://msdn2.microsoft.com/en-us/library/ms227679�
http://msdn2.microsoft.com/en-us/library/ms227679�
http://msdn2.microsoft.com/en-us/library/ms178366.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 56 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 MinValue (string) – Set the minimum value of a range. It affects the spinners, up/down arrow key commands, and is
automatically used by the RangeValidator when its own Minimum property is unassigned.

While it’s a string type, it must represent an integer or double value. This property is great for design mode and
ASP.NET Declarative Syntax. When programming, it’s easier to use MinValueAsInteger because they don’t require
conversion from your integer to a string.

 MaxValue (string) – Set the maximum value of a range. It affects the spinners, up/down arrow key commands, and is
automatically used by the RangeValidator when its own Maximum property is unassigned.

While it’s a string type, it must represent an integer or double value. This property is great for design mode and
ASP.NET Declarative Syntax. When programming, it’s easier to use MaxValueAsInteger because they don’t require
conversion from your integer to a string.

 MinValueAsInteger (Integer) – Set the minimum value of a range. Alternative to MinValue that takes an integer. Must
be set programmatically. It affects the spinners, up/down arrow key commands, and is automatically used by the
RangeValidator when its own Minimum property is unassigned.

 MaxValueAsInteger (Integer) – Set the maximum value of a range. Alternative to MaxValue that takes an integer.
Must be set programmatically. It affects the spinners, up/down arrow key commands, and is automatically used by the
RangeValidator when its own Maximum property is unassigned.

 AllowNegatives (Boolean) – Determines if negative numbers are permitted. When true, they are permitted. It defaults
to true. When false, keyboard filtering will not allow the minus ("-") character, and the DataTypeCheckValidator
will report errors when negative values are entered. It defaults to true.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 57 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Editing Properties
These Properties Editor shows these properties in the category “Editing”.

 ReadOnly (Boolean) – Determines if the textbox is editable or not. When ReadOnly is true, it is not editable.
However, the focus can enter the textbox. You can still permit editing by using the arrow keys (UpDnKeysIncrement =
true) and with the spinners (ShowSpinners = true) by setting ReadOnlyAllowsEdits to true.

 ReadOnlyAllowsEdits (Boolean) – Overrides the ReadOnly property to let spinners and arrow keys edit a read-only
textbox. It defaults to false.

If you don’t want to support arrows, set UpDnKeysIncrement to false.

Not used when ReadOnly is false.

 UpDnKeysIncrement (Boolean) – Determines if the up and down arrow keys increment and decrement the value.

When true, the up and down arrow keys increment and decrement. When false, they do not.

It defaults to true.

 UseKeyboardFiltering (Boolean) – When true, the browser filters out characters that are not supported by the data
type. When false, it allows all keystrokes. It defaults to true. Keyboard filtering is automatically disabled on
browsers that do not support DES's client-side code.

The filter for IntegerTextBox allows only digits the culture specific decimal point character
(CultureInfo.NumberFormat.NumberDecimalSeparator) and minus ("-"). Minus depends on the AllowNegatives
property.

 OnChangeFunctionName (string) – Allows you to extend the client side onchange event fired when the user exits the
`TextBox or invokes one of its commands. During the onchange event, the number is validated, reformatted, and passed
along to other objects.

You create a JavaScript function and assign its name to the OnChangeFunctionName property. You can give it any
legal JavaScript name you want.

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

See also “Adding Your JavaScript to the Page”.

Defining the JavaScript Function

Declare a JavaScript function in your page with three parameters:

o TextBoxID (string) - The element ID to the text box of the date text box control. It matches the ClientID
property of the TextBox.

o Value (integer) - The resulting number in the field. It will be null if the number was invalid or the textbox was
blank.

o Error (boolean) – When true, the number was invalid including a bad format or an illegal number. When
false, there is no error or the textbox is blank.

The function does not return anything.

Here is an example function which assigns the number to another IntegerTextBox whose ID is ITB2:

function MyOnChangeFnc(pTBId, pValue, pError)
{
 if (!pError)
 DES_SetDTTBValue('ITB2', pValue, true); // if pValue=null, ITB2 is blank
}

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 58 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 OnChangeFunctionAlways (boolean) – Used when OnChangeFunctionName is defined. When
OnChangeFunctionAlways is false, your function will only be called when there is a valid number. When
OnChangeFunctionAlways is true, it will be called on every change. You can detect these cases:

o Valid number: Value parameter is an integer and Error is false.

o Invalid number: Value parameter is null and Error is true.

o Blank textbox: Value parameter is null and Error is false.

See “JavaScript Support Functions” for numerous functions that can assist in your coding efforts.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 59 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Formatting Properties
These properties determine what text is considered valid for an integer. In addition, the
PeterBlum.DES.Globals.Page.CultureInfo determines many formatting rules.

The following properties are identified in the category “Formatting” under the Properties Editor:

 ShowThousandsSeparator (Boolean) – When true, the thousand separator is added into the textbox as it is
reformatted. The thousands separator character is defined in PeterBlum.DES.Globals.Page.CultureInfo. When
false, no thousand characters are shown. If the user had entered them, they would be removed. It defaults to false.

Note: This TextBox always permits entry of the thousands separator regardless of this property.

 FillLeadZeros (Integer) – Provides additional formatting when converting an integer to text by adding lead zeros. When
> 0, it adds enough lead zeroes to match the value of this property. For example, if this is 4, all values will have 4 digits.
Any number that does not offer 4 digits gets lead zeros to fill it. When the user enters “34”, this reformats to “0034”.

This is a formatting feature; it doesn't change the numeric value. If you want to maintain the textual representation with
lead zeros, get and set the data value with the Text property.

When 0, it is not used.

It defaults to 0.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 60 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Spinner Properties
The Spinner is an extension to the IntegerTextBox. It provides a pair of arrow buttons that increment or decrement the value
of the textbox when clicked. You can customize the button appearance and autorepeat speed with properties on
PeterBlum.DES.Globals.Page.SpinnerManager. It respects the limits established with the MinValue and MaxValue
properties.

The following properties are identified in the category “Spinner” under the Properties Editor:

 ShowSpinner (Boolean) – When true, the spinner control is shown. When false, it is not. It defaults to false.

 IncrementValue (Double) – The number to add or subtract to the current value. It supports decimal values. It defaults to
1.0.

 ContainerMode (enum PeterBlum.DES.ContainerMode) – When the spinner is shown, the HTML output looks like
this:

<input type='text' [attributes]/><table>[spinner buttons]<table/>

When you assign absolute positioning (“gridlayout”), the style attribute used for absolute positioning would normally get
assigned to the <input> tag, only affecting its position. If nothing else was done, you would see the textbox in the
correct location while the buttons would be elsewhere on the page.

In addition, these tags can wrap around, especially when placed in a <p> tag or a table cell that is too small. The
spinners appear below the textbox when that happens.

Use the ContainerMode property to add either a or <table> tag around this control that limits wrap around.
This property is only used when you are showing spinners. When using absolute positioning, the styles used for
positioning are moved into the container tag so all of this control’s tags are grouped under a common position.

The enumerated type PeterBlum.DES.ContainerMode has these values:

o None – Do not create a container. Use it when you want to create your own container or otherwise control the
formatting. If you need to absolutely position this control, you must assign the styles for absolute positioning to
your own container.

o Auto – Creates either a or <table> depending on the browser’s support of these styles: white-
space:nowrap (used by) and display:inline-block (used by <table>). Internet Explorer
5+ and the Mozilla-based browsers support white-space:nowrap (as determined by the
PeterBlum.DES.Globals.Page.Browser.MakeWhiteSpaceNoWrap property.) Opera 7+ and Safari support
display:inline-block (as determined by the
PeterBlum.DES.Globals.Page.Browser.MakeBlockInlineValue property.)

This is the default.

Note: A tag generates much smaller HTML than the <table> tag.

o Span – Creates a tag. It uses the style white-space:nowrap to prevent wrapping. Some
browsers do not support this style and it will be omitted, leaving the control susceptible to wrapping on those
browsers. (The PeterBlum.DES.Globals.Page.Browser.MakeWhiteSpaceNoWrap property determines
support for this style.)

The tag will also be assigned the style vertical-align:text-bottom to keep all elements in a
reasonable layout. Yet, some browsers do not make the alignments for this style as well as Internet Explorer and
Mozilla-based browsers.

o Table – Creates a <table> around the controls with each HTML element in its own table cell. While this is
the most reliable, it has these limitations on browsers other than Internet Explorer for Windows, Mozilla,
FireFox, and Netscape 6+:

Some browsers do not support the display:inline or display:inline-block style required to
position the table inside a row of text. A tag will be generated instead.

It uses the style vertical-align:middle to attempt to align all elements. Yet, some browsers do not
make the alignments for this style as well as Internet Explorer and Mozilla-based browsers.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 61 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

It sets padding and margin styles to 0px on all sides of the cells. It sets cellpadding and
cellspacing to 0 as well. These attempt to remove any shifting imposed by the table’s margins. Yet, some
browsers do not make the positioning as well as Internet Explorer and Mozilla-based browsers. You may notice
misalignment with other elements in the same row.

Note: A tag generates much smaller HTML than the <table> tag.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 62 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

DecimalTextBox Control
The PeterBlum.DES.DecimalTextBox is a TextBox designed for decimal number data entry. It knows how to convert
a System.Double type into text and back. It has properties to determine the number of decimal places, trialing zeroes, if it
supports negative numbers and shows the thousands separator. You can add a spinner control for the user to increment the
value.

Click on any of these topics to jump to them:

 Features

 Using the DecimalTextBox

 Getting and Setting the Value of the TextBox

 Formatting The Text

 Adding A Spinner

 Connecting Data To Other Fields On The Client-Side

 When the TextBox is Empty

 Validation on AutoPostBack

 Interactive Hints

 AutoComplete and “Smart Change System”

 Other Behaviors

 Adding a DecimalTextBox

 Properties for the DecimalTextBox

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 63 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Features
Use demos here: http://www.peterblum.com/DES/DemoTextBoxes.aspx.

 It subclasses from PeterBlum.DES.TextBox, inheriting all of its qualities. See “Enhanced TextBox”.

 Get and set the value of the textbox using an integer data type instead of a string, avoiding you having to write
conversion code.

 Set a property to allow or prevent entry of negative numbers.

 It is culture sensitive, respecting the CultureInfo object defined on the PeterBlum.DES.Globals.Page.CultureInfo
property.

 On the client-side, it filters keystrokes so users can only enter characters suitable to for integer entry.

 On the client-side, it reformats if needed as the user exits the textbox. For example, if the user enters “1000”, it reformats
to “1,000” (when showing the optional thousands separator.)

 When you attach a Validator to them, the Validator automatically configures itself to evaluate an integer with the other
data entry rules specified on this control.

 Use a spinner control (up and down arrows to the right of the textbox) to increment the value.

 Use up and down arrow keys to increment the value.

http://www.peterblum.com/DES/DemoTextBoxes.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 64 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Using the DecimalTextBox
Use demos here: http://www.peterblum.com/DES/DemoTextBoxes.aspx.

The PeterBlum.DES.DecimalTextBox is subclassed from PeterBlum.DES.TextBox, which is an enhanced
version of the TextBox control supplied with ASP.NET. If you know how to use the ASP.NET TextBox, you already know
how to use this control. See “Using the Enhanced TextBox Control”.

Click on any of these topics to jump to them:

 Getting and Setting the Value of the TextBox

 Formatting The Text

 Adding A Spinner

 Connecting Data To Other Fields On The Client-Side

 When the TextBox is Empty

 Validation on AutoPostBack

 Interactive Hints

 AutoComplete and “Smart Change System”

 Other Behaviors

http://www.peterblum.com/DES/DemoTextBoxes.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 65 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Getting and Setting the Value of the TextBox
When getting or setting the value, use the DoubleValue or DecimalValue property instead of the Text property. These
properties convert your double or decimal into the localized text shown in the textbox.

If you are using DataBinding, consider these alternative properties: DoubleBindable and DoubleNullable.

You can limit the number of decimal places with MaxDecimalPlaces.

By default, negatives are not permitted. If allow negative numbers, set AllowNegatives to true. The
DataTypeCheckValidator will respect this setting and report an error when a negative number is found.

You can check for a blank textbox by checking the IsEmpty property for true. The DecimalTextBox also contain an
invalid entry, such as an illegal characters or badly formatted entry. You can check for an invalid entry by checking the
IsValid property for false, although a validator should avoid having to test for an invalid value.

When you need a server side event that is fired when the textbox’s value has changed, use the TextChanged event.

Data Entry Validation

Consider validation a manditory part of data entry, whether it’s a DecimalTextBox or just an ordinary textbox. It prevents
illegal entries from getting into your database. Even if the DecimalTextBox enforces some rules for you, users may not have
a browser that supports the client-side code for the DecimalTextBox, or its validators for that matter. Hackers often turn off
javascript in their browser in hopes that your server side code doesn’t protect against their illegal data.

Validation Guidelines:

 At minimum, validate the decimal number format with one of these validators.

o When using the DES Validation Framework, assign a DataTypeCheckValidator to each DecimalTextBox. (See
the Validation User’s Guide.)

o When using the Native Validation Framework, use DES’s CompareValidator with the Operator property set to
DataTypeCheck. (This validator is in the PeterBlum.DES.NativeValidators assembly. If you haven’t
done so, add this assembly to its own tab in the Visual Studio/VWD toolbox. See the Installation Guide for
details.) See “Validation with the Native Validation Framework”.

 Set up server side validation.

o When using DES’s validation framework, test PeterBlum.DES.Globals.Page.IsValid in your postback event
handler methods. Only use the data if it is true.

o When using the native validation framework, test Page.IsValid in your postback event handler. Only use the
data if it is true.

 You can establish a numeric range to prevent selection outside the range using MinValue and MaxValue. Add the
RangeValidator to report errors when the user types numbers outside the range. DES provides two RangeValidators, one
for its own validation framework and the other for the native validation framework. Choose the correct one. Do not use
the original RangeValidator that comes with ASP.NET.

Alternatively, if you feel an out of range value can be reported under the error message from your
DataTypeCheckValidator (or CompareValidator in the Native Validation Framework), set the
DataTypeCheckReportsRangeErrors to true.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox.textchanged.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 66 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Formatting The Text
DES uses the System.Globalization.CultureInfo class to define most numeric formatting rules. You establish the desired
CultureInfo on the PeterBlum.DES.Globals.Page.CultureInfo property. Decimal values use the following properties from
CultureInfo.NumberFormat:

 Decimal place character from CultureInfo.NumberFormat.NumberDecimalSeparator.

 Thousands separator from CultureInfo.NumberFormat.NumberGroupSeparator.

 Negative number format from CultureInfo.NumberFormat.NumberNegativePattern.

Other Formatting Rules

You can add trailing zeroes to the decimal places with TrailingZeroDecimalPlaces.

To show thousands separators, set ShowThousandsSeparator to true.

http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo(vs.71).aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 67 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Adding A Spinner
A Spinner is a control with two arrows that appear to the right of the textbox. For example:

When the user clicks on an arrow, it increments or decrements the value. If they hold down the button, it repeatedly changes
the value and after 5 cycles, its speed increases.

To use the Spinner, set ShowSpinner to true. Use the SpinnerManager object to change the URL to the arrow button
images and the auto repeat speed. (SpinnerManager is a property of PeterBlum.DES.Globals.Page and the PageManager
control.)

Note: Spinners are only supported on these browsers: IE Windows 5+, Netscape 7+, Mozilla 1.1+, FireFox, Opera 7+, and
Safari.

If you have client-side code that shows or hides the textbox, call the function DES_Refresh() to tell DES to change the
visibility of the spinners. This is handled automatically when using the FieldStateController.

When the spinner is shown, the control attempts to keep the spinner side-by-side with the textbox by enclosing the two
elements in either a or <table> tag, depending on the browser. If you want to remove the enclosure, set
ContainerMode to None.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 68 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Connecting Data To Other Fields On The Client-Side
Often users want to update other textboxes and labels when a value is changed in a DecimalTextBox. Use the
CalculationController to perform math based on these textboxes. It can update a textbox or label for you. See the Peter’s
Interactive Pages User’s Guide.

For other situations, write your own client-side JavaScript code. DES supplies a number of JavaScript functions to greatly
simplify working with the DecimalTextBoxes on the client-side. See “JavaScript Support Functions”.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 69 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Adding a DecimalTextBox
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Add a DecimalTextBox control to the page.

Visual Studio and Visual Web Developer Design Mode Users

Drag the DecimalTextBox control from the Toolbox onto your web form.

Text Entry Users

Add the control (inside the <form> area):

<des:DecimalTextBox id="[YourControlID]" runat="server" />

Programmatically creating the DecimalTextBox control

 Identify the control which you will add the DecimalTextBox control to its Controls collection. Like all ASP.NET
controls, the TextBox can be added to any control that supports child controls, like Panel, User Control, or
TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location and use the
PlaceHolder.

 Create an instance of the DecimalTextBox control class. The constructor takes no parameters.

 Assign the ID property.

 Add the DecimalTextBox control to the Controls collection.

In this example, the DecimalTextBox is created with an ID of “DecimalTextBox1”. It is added to PlaceHolder1.

[C#]

PeterBlum.DES.DecimalTextBox vTextBox = new PeterBlum.DES.DecimalTextBox();
vTextBox.ID = "DecimalTextBox1";
PlaceHolder1.Controls.Add(vTextBox);

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add a using clause to that namespace on your
form.

 [VB]

Dim vTextBox As PeterBlum.DES.DecimalTextBox = _
 New PeterBlum.DES.DecimalTextBox()
vTextBox.ID = "DecimalTextBox1"
PlaceHolder1.Controls.Add(vTextBox)

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add an Imports clause to that namespace on
your form.

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

3. Set the properties associated with the DecimalTextBox.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 70 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

4. Assign Validators to the TextBox.

Using DES Validation Framework

See the Validation User’s Guide for details on these validators.

 Always add the DataTypeCheckValidator to block formatting errors.

 Add a RangeValidator if you are using the MinValue and MaxValue properties.

 If you have two DecimalTextBoxes where one needs to be greater, less than, equal or not equal to the other, add a
CompareTwoFieldsValidator.

 If you have two DecimalTextBoxes where one must be greater or less than the other by a specific number, add a
DifferenceValidator. Specify the number in the DifferenceValue property.

 Be sure that server side validation has been correctly set up.

Using Native Validation Framework

These validators are found in the PeterBlum.DES.NativeValidators assembly. Do not use the original
CompareValidator and RangeValidator that come with ASP.NET because they don’t handle the rich data entry formats
of the DecimalTextBox. See “Validation with the Native Validation Framework”.

 Always add the CompareValidator with its Operator set to DataTypeCheck to block formatting errors.

 Add a RangeValidator when you are using the MinValue and MaxValue properties.

 If you have two DecimalTextBoxes where one needs to be greater, less than, equal or not equal to the other, add a
CompareValidator. Set its ControlToValidate property to the start DecimalTextBox and ControlToCompare
property to the end DecimalTextBox.

 If you have two DecimalTextBoxes where one must be greater or less than the other by a specific number, add the
DifferenceValidator.

 Be sure that server side validation has been correctly set up.

5. Get and set the value using the DoubleValue or DecimalValue property. When databinding, use DoubleBindable.

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid (DES
validation framework) or Page.IsValid (native validation framework) is true.

6. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

 See also “Additional Topics for Using These Controls”.

Use demos here: http://www.peterblum.com/DES/DemoTextBoxes.aspx.

http://www.peterblum.com/DES/DemoTextBoxes.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 71 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Properties for the DecimalTextBox
Most of the properties are inherited from PeterBlum.DES.TextBox (see “Properties for the Enhanced TextBox”) and
the ASP.NET TextBox (see “System.Web.UI.WebControls.TextBox Members”).

Click on any of these topics to jump to them:

 Getting And Setting The Value Properties

 Editing Properties

 Formatting Properties

 Spinners Properties

The following topics are inherited from DES’s TextBox control:

 Editing Properties

 Behavior Properties

 Appearance Properties

 AutoPostBack Properties

 Value When Blank Properties

 ToolTip Properties

 Hint Properties

 Tab Rules Properties

 Client-Side Functions Properties

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolstextboxmemberstopic.asp�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 72 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Getting And Setting The Value Properties
There are numerous ways to get and set the numeric value of this textbox. Choose the best one for your needs.

Some of these properties are hidden from the Properties Editor as they are only intended to be used programmatically. When
shown, they appear under the “Data” Category.

 DoubleValue (double) – Gets and sets the value for this control using a System.Double value. You generally access
this property programmatically. This property is preferred over using the Text property. However, you can get and set
the value on the Text property so long as you handle the conversion between string and Double.

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid (when using
a DataTypeCheckValidator) or its own IsValid property is true.

Note: If you attempt to get a value from DoubleValue when the text is incorrectly formatted, you will get a
System.FormatException thrown.

You can set the textbox value to "" either by assigning Text = "" or DoubleValue = System.Double.MinValue.

Note: While .net handles larger values with its System.Decimal type, on the client-side JavaScript is limited to something
close to the range of the System.Double type.

 DecimalValue (decimal) – Gets and sets the value for this control using a System.Decimal value. See also
DoubleValue, IntegerValue, and other properties in this section as alternatives. You generally access this property
programmatically. This property is preferred over using the Text property. However, you can get and set the value on the
Text property so long as you handle the conversion between string and Decimal.

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid (when using
a DataTypeCheckValidator) or its own IsValid property is true.

Note: If you attempt to get a value from DecimalValue when the text is incorrectly formatted, you will get a
System.FormatException thrown.

You can set the textbox value to "" either by assigning Text = "" or DecimalValue = System.Decimal.MinValue
or call SetEmpty().

Note: While .net handles larger values with its System.Decimal type, on the client-side JavaScript is limited to something
close to the range of the System.Double type.

 DoubleBindable (object) – An alternative to DoubleValue designed for handling multiple types. It accepts either a
decimal, double, single, int32, SqlDecimal, SqlDouble, SqlInt32, null, string, or System.DbNull.Value.

It returns a Double or SqlDouble depending on BindableMode.

It is preferred when using DataBinding, due to its flexibility with data types.

When evaluating a string, the format must represent a decimal or integer value respecting the culture formatting of
PeterBlum.DES.Globals.Page.CultureInfo.

 BindableMode (enum PeterBlum.DES.BindMode) – Determines how the DoubleBindable properties returns its value,
as either a native type (32 bit integer or double) or a System.Data.SqlTypes type (SqlInteger or SqlDouble).

o Normal – Returns a double when the textbox is valid or null/nothing when the textbox is blank or has an
illegal value. This is the default value.

o SqlTypes – Returns a SqlDouble when the textbox is valid or 2System.DBNull.Value when the textbox
is blank or has an illegal value.

o TwoWay – Use this when you are using System.Web.UI.WebControls.SqlDataSource and other
DataSource web controls to implement two-way databinding. Returns a double when the textbox is valid or
null/nothing when the textbox is blank or has an illegal value.

http://msdn2.microsoft.com/en-us/library/ms227679�
http://msdn2.microsoft.com/en-us/library/ms227679�
http://msdn2.microsoft.com/en-us/library/ms227679�
http://msdn2.microsoft.com/en-us/library/ms178366.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 73 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 DoubleNullable (double) – Requires ASP.NET 2 or higher. Read only. An alternative to DoubleValue that accepts
either a double or null/nothing. When using null/nothing, it clears the textbox.

 DoubleValueOrZero (double) – An alternative to DoubleValue that returns a value even if the text is blank or not a
valid number. When it’s blank or an invalid entry, it returns a value of 0.0. This is a read-only property.

 IsValid (Boolean) – Determines if the contents of the TextBox represent a number. It returns true when it does
represent a number. It always returns false when the Text property is blank (after trimming). Consider using a
DataTypeCheckValidator instead of this property. This is a read only property.

 IsEmpty (Boolean) – Determines if the text is blank (after trimming). You should not attempt to get the field's value
when this returns true because a blank textbox has no value. Consider adding a RequiredTextValidator to this control
to prevent getting blank text fields. This is a read only property.

 MinValue (string) – Set the minimum value of a range. It affects the spinners, up/down arrow key commands, and is
automatically used by the RangeValidator when its own Minimum property is unassigned.

While it’s a string type, it must represent a double value. This property is great for design mode and ASP.NET
Declarative Syntax. When programming, it’s easier to use MinValueAsDouble because they don’t require conversion
from your double to a string.

 MaxValue (string) – Set the maximum value of a range. It affects the spinners, up/down arrow key commands, and is
automatically used by the RangeValidator when its own Maximum property is unassigned.

While it’s a string type, it must represent a double value. This property is great for design mode and ASP.NET
Declarative Syntax. When programming, it’s easier to use MaxValueAsDouble because they don’t require conversion
from your double to a string.

 MinValueAsDouble (double) – Set the minimum value of a range. Alternative to MinValue that takes a double. Must
be set programmatically. It affects the spinners, up/down arrow key commands, and is automatically used by the
RangeValidator when its own Minimum property is unassigned.

 MaxValueAsDouble (double) – Set the maximum value of a range. Alternative to MaxValue that takes a double. Must
be set programmatically. It affects the spinners, up/down arrow key commands, and is automatically used by the
RangeValidator when its own Maximum property is unassigned.

 AllowNegatives (Boolean) – Determines if negative numbers are permitted. When true, they are permitted. It defaults
to true. When false, keyboard filtering will not allow the minus ("-") character, and the DataTypeCheckValidator
will report errors when negative values are entered. It defaults to false.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 74 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Editing Properties
The Properties Editor shows these properties in the category “Editing”.

 ReadOnly (Boolean) – Determines if the textbox is editable or not. When ReadOnly is true, it is not editable.
However, the focus can enter the textbox. You can still permit editing by using the arrow keys (UpDnKeysIncrement =
true) and with the spinners (ShowSpinners = true) by setting ReadOnlyAllowsEdits to true.

 ReadOnlyAllowsEdits (Boolean) – Overrides the ReadOnly property to let spinners and arrow keys edit a read-only
textbox. It defaults to false.

If you don’t want to support arrows, set UpDnKeysIncrement to false.

 UpDnKeysIncrement (Boolean) – Determines if the up and down arrow keys increment and decrement the value.

When true, the up and down arrow keys increment and decrement. When false, they do not.

It defaults to true.

 AcceptPeriodAsDecimalSeparator (Boolean) – Many cultures do not use the period as the decimal separator. It makes
numeric entry from the numeric keypad more difficult, because it features a period key. When setup, both the culture's
decimal separator and a period are allowed as the decimal separator. The textbox will convert the period to the decimal
character.

Does not apply for cultures that already use a period for the decimal separator. Some cultures use a period as a thousands
separator. In those cases, the parser will only consider periods the decimal separator when there is only one period
character and the culture's decimal separator is not found.

When true, the feature is used so long as the current culture's decimal separator is not already a period.

When false, the feature is not used.

It defaults to false.

 UseKeyboardFiltering (Boolean) – When true, the browser filters out characters that are not supported by the data
type. When false, it allows all keystrokes. It defaults to true. Keyboard filtering is automatically disabled on
browsers that do not support DES's client-side code.

The filter for DecimalTextBox allows only digits the culture specific decimal point character
(CultureInfo.NumberFormat.NumberDecimalSeparator) and minus ("-"). Minus depends on the AllowNegatives
property.

 OnChangeFunctionName (string) – Allows you to extend the client side onchange event fired when the user exits the
DecimalTextBox or invokes one of its commands. During the onchange event, the number is validated, reformatted, and
passed along to other objects.

You create a JavaScript function and assign its name to the OnChangeFunctionName property. You can give it any
legal JavaScript name you want.

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

See also “Adding Your JavaScript to the Page”.

Defining the JavaScript Function

Declare a JavaScript function in your page with three parameters:

o TextBoxID (string) - The element ID to the text box of the date text box control. It matches the ClientID
property of the TextBox.

o Value (floating point) - The resulting number in the field. It will be null if the number was invalid or the
textbox was blank.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 75 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

o Error (boolean) – When true, the number was invalid including a bad format or an illegal number. When
false, there is no error or the textbox is blank.

The function does not return anything.

Here is an example function which assigns the number to another DecimalTextBox whose ID is DTB2:

function MyOnChangeFnc(pTBId, pValue, pError)
{
 if (!pError)
 DES_SetDTTBValue('DTB2', pValue, true); // if pValue=null, DTB2 is blank
}

 OnChangeFunctionAlways (boolean) – Used when OnChangeFunctionName is defined. When
OnChangeFunctionAlways is false, your function will only be called when there is a valid number. When
OnChangeFunctionAlways is true, it will be called on every change. You can detect these cases:

o Valid number: Value parameter is an integer and Error is false.

o Invalid number: Value parameter is null and Error is true.

o Blank textbox: Value parameter is null and Error is false.

See “JavaScript Support Functions” for numerous functions that can assist in your coding efforts.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 76 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Formatting Properties
These properties determine what text is considered valid for a decimal number. In addition, the
PeterBlum.DES.Globals.Page.CultureInfo determines many formatting rules.

 ShowThousandsSeparator (Boolean) – When true, the thousand separator is added into the textbox as it is
reformatted. The thousands separator character is defined in PeterBlum.DES.Globals.Page.CultureInfo. When
false, no thousand characters are shown. If the user had entered them, they would be removed. It defaults to false.

Note: This TextBox always permits entry of the thousands separator regardless of this property.

 TrailingZeroDecimalPlaces (Integer) – Determines how many trailing decimal places should appear when reformatting
a double value to a string.

When the number of digits after the decimal point is less than this number, trailing zeros are added.

When this value is 0, the value will be represented as a whole number with no decimal point when there are no non-zero
digits after the decimal point. For example, “1.0” will be represented as “1”.

When this value is -1, no change is made to the formatting; this property is not used.

It defaults to -1.

 MaxDecimalPlaces (Integer) – Determines the maximum number of decimal places allowed. When the user enters
more, it is an error which the DataTypeCheckValidator will detect.

Set to 0 to ignore this property. It defaults to 0.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 77 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Spinners Properties
The Spinner is an extension to the DecimalTextBox. It provides a pair of arrow buttons that increment or decrement the value
of the textbox when clicked. You can customize the button appearance and autorepeat speed with properties on
PeterBlum.DES.Globals.Page.SpinnerManager. It respects the limits established with the MinValue and MaxValue
properties.

The following properties are identified in the category “Spinner” under the Properties Editor:

 ShowSpinner (Boolean) – When true, the spinner control is shown. When false, it is not. It defaults to false.

 IncrementValue (Double) – The number to add or subtract to the current value. It supports decimal values. It defaults to
1.0. If you use a decimal number, also set MaxDecimalPlaces to enough digits to hold the decimal portion. For example,
if this is 0.25, set MaxDecimalPlaces to a minimum of 2.

 ContainerMode (enum PeterBlum.DES.ContainerMode) – When the spinner is shown, the HTML output looks like
this:

<input type='text' [attributes]/><table>[spinner buttons]<table/>

When you assign absolute positioning (“gridlayout”), the style attribute used for absolute positioning would normally get
assigned to the <input> tag, only affecting its position. If nothing else was done, you would see the textbox in the
correct location while the buttons would be elsewhere on the page.

In addition, these tags can wrap around, especially when placed in a <p> tag or a table cell that is too small. The
spinners appear below the textbox when that happens.

Use the ContainerMode property to add either a or <table> tag around this control that limits wrap around.
This property is only used when you are showing spinners. When using absolute positioning, the styles used for
positioning are moved into the container tag so all of this control’s tags are grouped under a common position.

The enumerated type PeterBlum.DES.ContainerMode has these values:

o None – Do not create a container. Use it when you want to create your own container or otherwise control the
formatting. If you need to absolutely position this control, you must assign the styles for absolute positioning to
your own container.

o Auto – Creates either a or <table> depending on the browser’s support of these styles: white-
space:nowrap (used by) and display:inline-block (used by <table>). Internet Explorer
5+ and the Mozilla-based browsers support white-space:nowrap (as determined by the
PeterBlum.DES.Globals.Page.Browser.MakeWhiteSpaceNoWrap property.) Opera 7+ and Safari support
display:inline-block (as determined by the
PeterBlum.DES.Globals.Page.Browser.MakeBlockInlineValue property.)

This is the default.

Note: A tag generates much smaller HTML than the <table> tag.

o Span – Creates a tag. It uses the style white-space:nowrap to prevent wrapping. Some
browsers do not support this style and it will be omitted, leaving the control susceptible to wrapping on those
browsers. (The PeterBlum.DES.Globals.Page.Browser.MakeWhiteSpaceNoWrap property determines
support for this style.)

The tag will also be assigned the style vertical-align:text-bottom to keep all elements in a
reasonable layout. Yet, some browsers do not make the alignments for this style as well as Internet Explorer and
Mozilla-based browsers.

o Table – Creates a <table> around the controls with each HTML element in its own table cell. While this is
the most reliable, it has these limitations on browsers other than Internet Explorer for Windows, Mozilla,
FireFox, and Netscape 6+:

Some browsers do not support the display:inline or display:inline-block style required to
position the table inside a row of text. A tag will be generated instead.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 78 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

It uses the style vertical-align:middle to attempt to align all elements. Yet, some browsers do not
make the alignments for this style as well as Internet Explorer and Mozilla-based browsers.

It sets padding and margin styles to 0px on all sides of the cells. It sets cellpadding and
cellspacing to 0 as well. These attempt to remove any shifting imposed by the table’s margins. Yet, some
browsers do not make the positioning as well as Internet Explorer and Mozilla-based browsers. You may notice
misalignment with other elements in the same row.

Note: A tag generates much smaller HTML than the <table> tag.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 79 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

CurrencyTextBox Control
The PeterBlum.DES.CurrencyTextBox is a TextBox designed for currency number data entry. A currency number is
really just a decimal number that uses specialized rules for its formatting including currency symbol and how to formats
negative values. The CurrencyTextBox knows how to convert a System.Double type into text and back. It has properties
to determine how to handle decimal places, show the currency symbol, support for negative numbers and show the thousands
separator. You can add a spinner control for the user to increment the value.

Click on any of these topics to jump to them:

 Features

 Using the CurrencyTextBox

 Getting and Setting the Value of the TextBox

 Formatting The Text

 Adding A Spinner

 Connecting Data To Other Fields On The Client-Side

 When the TextBox is Empty

 Validation on AutoPostBack

 Interactive Hints

 AutoComplete and “Smart Change System”

 Other Behaviors

 Adding a CurrencyTextBox

 Properties for the CurrencyTextBox

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 80 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Features
Use demos here: http://www.peterblum.com/DES/DemoTextBoxes.aspx.

 It subclasses from PeterBlum.DES.TextBox, inheriting all of its qualities. See “Enhanced TextBox”.

 Get and set the value of the textbox using a double or decimal data type instead of a string, avoiding you having to write
conversion code.

 Set a property to allow or prevent entry of negative numbers.

 It optionally can show the currency symbol within the text.

 It is culture sensitive, respecting the CultureInfo object defined on the PeterBlum.DES.Globals.Page.CultureInfo
property.

 On the client-side, it filters keystrokes so users can only enter characters suitable to for decimal entry.

 On the client-side, it reformats if needed as the user exits the textbox. For example, if the user enters “1000”, it reformats
to “$1,000.00” (when showing the optional thousands separator.)

 When you attach a Validator to them, the Validator automatically configures itself to evaluate a currency value with the
other data entry rules specified on this control.

 Use a spinner control (up and down arrows to the right of the textbox) to increment the value.

 Use up and down arrow keys to increment the value.

http://www.peterblum.com/DES/DemoTextBoxes.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 81 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Using the CurrencyTextBox
Use demos here: http://www.peterblum.com/DES/DemoTextBoxes.aspx.

The PeterBlum.DES.CurrencyTextBox is subclassed from PeterBlum.DES.TextBox, which is an enhanced
version of the TextBox control supplied with ASP.NET. If you know how to use the ASP.NET TextBox, you already know
how to use this control. See “Using the Enhanced TextBox Control”.

Click on any of these topics to jump to them:

 Getting and Setting the Value of the TextBox

 Formatting The Text

 Adding A Spinner

 Connecting Data To Other Fields On The Client-Side

The following topics are inherited from DES’s TextBox control:

 When the TextBox is Empty

 Validation on AutoPostBack

 Interactive Hints

 AutoComplete and “Smart Change System”

 Other Behaviors

http://www.peterblum.com/DES/DemoTextBoxes.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 82 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Getting and Setting the Value of the TextBox
When getting or setting the value, use the DoubleValue, or DecimalValue property instead of the Text property. These
properties convert your integer or double into the localized text shown in the textbox.

If you are using DataBinding, consider these alternative properties: DoubleBindable and DoubleNullable.

If this field permits more decimal digits than the culture allows, set AllowExtraDecimalDigits to true.

By default, negatives are not permitted. If allow negative Currency, set AllowNegatives to true. The
DataTypeCheckValidator will respect this setting and report an error when a negative number is found.

You can check for a blank textbox by checking the IsEmpty property for true. The CurrencyTextBox also contain an
invalid entry, such as an illegal characters or badly formatted entry. You can check for an invalid entry by checking the
IsValid property for false, although a validator should avoid having to test for an invalid value.

When you need a server side event that is fired when the textbox’s value has changed, use the TextChanged event.

Data Entry Validation

Consider validation a manditory part of data entry, whether it’s a CurrencyTextBox or just an ordinary textbox. It prevents
illegal entries from getting into your database. Even if the CurrencyTextBox enforces some rules for you, users may not have
a browser that supports the client-side code for the CurrencyTextBox, or its validators for that matter. Hackers often turn off
javascript in their browser in hopes that your server side code doesn’t protect against their illegal data.

Validation Guidelines:

 At minimum, validate the currency number format with one of these validators.

o When using the DES Validation Framework, assign a DataTypeCheckValidator to each CurrencyTextBox. (See
the Validation User’s Guide.)

o When using the Native Validation Framework, use DES’s CompareValidator with the Operator property set to
DataTypeCheck. (This validator is in the PeterBlum.DES.NativeValidators assembly. If you haven’t
done so, add this assembly to its own tab in the Visual Studio/VWD toolbox. See the Installation Guide for
details.) See “Validation with the Native Validation Framework”.

 Set up server side validation.

o When using DES’s validation framework, test PeterBlum.DES.Globals.Page.IsValid in your postback event
handler methods. Only use the data if it is true.

o When using the native validation framework, test Page.IsValid in your postback event handler. Only use the
data if it is true.

 You can establish a numeric range to prevent selection outside the range using MinValue and MaxValue. Add the
RangeValidator to report errors when the user types numbers outside the range. DES provides two RangeValidators, one
for its own validation framework and the other for the native validation framework. Choose the correct one. Do not use
the original RangeValidator that comes with ASP.NET.

Alternatively, if you feel an out of range value can be reported under the error message from your
DataTypeCheckValidator (or CompareValidator in the Native Validation Framework), set the
DataTypeCheckReportsRangeErrors to true.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox.textchanged.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 83 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Formatting The Text
DES uses the System.Globalization.CultureInfo class to define most numeric formatting rules. You establish the desired
CultureInfo on the PeterBlum.DES.Globals.Page.CultureInfo property. Currency uses the following properties from
CultureInfo.NumberFormat:

 Decimal place character from CultureInfo.NumberFormat.CurrencyDecimalSeparator.

 Thousands separator from CultureInfo.NumberFormat.CurrencyGroupSeparator.

 Negative number format from CultureInfo.NumberFormat.CurrencyNegativePattern.

 The number of decimal places from CultureInfo.NumberFormat.CurrencyDecimalDigits.

Other Formatting Rules

If you want to show the currency symbol, set ShowCurrencySymbol to true.

If you want to omit decimal digits when the decimal digits are only “0” characters, set HideDecimalWhenZero to true.

To show thousands separators, set ShowThousandsSeparator to true.

http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo(vs.71).aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 84 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Adding A Spinner
A Spinner is a control with two arrows that appear to the right of the textbox. For example:

When the user clicks on an arrow, it increments or decrements the value. If they hold down the button, it repeatedly changes
the value and after 5 cycles, its speed increases.

To use the Spinner, set ShowSpinner to true. Use the SpinnerManager object to change the URL to the arrow button
images and the auto repeat speed. (SpinnerManager is a property of PeterBlum.DES.Globals.Page and the PageManager
control.)

Note: Spinners are only supported on these browsers: IE Windows 5+, Netscape 7+, Mozilla 1.1+, FireFox, Opera 7+, and
Safari.

If you have client-side code that shows or hides the textbox, call the function DES_Refresh() to tell DES to change the
visibility of the spinners. This is handled automatically when using the FieldStateController.

When the spinner is shown, the control attempts to keep the spinner side-by-side with the textbox by enclosing the two
elements in either a or <table> tag, depending on the browser. If you want to remove the enclosure, set
ContainerMode to None.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 85 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Connecting Data To Other Fields On The Client-Side
Often users want to update other textboxes and labels when a value is changed in a CurrencyTextBox. Use the
CalculationController to perform math based on these textboxes. It can update a textbox or label for you. See the Peter’s
Interactive Pages User’s Guide.

For other situations, write your own client-side JavaScript code. DES supplies a number of JavaScript functions to greatly
simplify working with the CurrencyTextBoxes on the client-side. See “JavaScript Support Functions”.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 86 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Adding a CurrencyTextBox
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Add a CurrencyTextBox control to the page.

Visual Studio and Visual Web Developer Design Mode Users

Drag the CurrencyTextBox control from the Toolbox onto your web form.

Text Entry Users

Add the control (inside the <form> area):

<des:CurrencyTextBox id="[YourControlID]" runat="server" />

Programmatically creating the CurrencyTextBox control

 Identify the control which you will add the CurrencyTextBox control to its Controls collection. Like all ASP.NET
controls, the TextBox can be added to any control that supports child controls, like Panel, User Control, or
TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location and use the
PlaceHolder.

 Create an instance of the CurrencyTextBox control class. The constructor takes no parameters.

 Assign the ID property.

 Add the CurrencyTextBox control to the Controls collection.

In this example, the CurrencyTextBox is created with an ID of “CurrencyTextBox1”. It is added to PlaceHolder1.

[C#]

PeterBlum.DES.CurrencyTextBox vTextBox = new PeterBlum.DES.CurrencyTextBox();
vTextBox.ID = "CurrencyTextBox1";
PlaceHolder1.Controls.Add(vTextBox);

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add a using clause to that namespace on your
form.

 [VB]

Dim vTextBox As PeterBlum.DES.CurrencyTextBox = _
 New PeterBlum.DES.CurrencyTextBox()
vTextBox.ID = "CurrencyTextBox1"
PlaceHolder1.Controls.Add(vTextBox)

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add an Imports clause to that namespace on
your form.

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

3. Set the properties associated with the CurrencyTextBox. See “Properties for the CurrencyTextBox”.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 87 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

4. Assign Validators to the TextBox.

Using DES Validation Framework

See the Validation User’s Guide for details on these validators.

 Always add the DataTypeCheckValidator to block formatting errors.

 Add a RangeValidator when you are using the MinValue and MaxValue properties.

 If you have two CurrencyTextBoxes where one needs to be greater, less than, equal or not equal to the other, add a
CompareTwoFieldsValidator.

 If you have two CurrencyTextBoxes where one must be greater or less than the other by a specific number, add a
DifferenceValidator. Specify the number in the DifferenceValue property.

 Be sure that server side validation has been correctly set up.

Using Native Validation Framework

These validators are found in the PeterBlum.DES.NativeValidators assembly. Do not use the original
CompareValidator and RangeValidator that come with ASP.NET because they don’t handle the rich data entry formats
of the CurrencyTextBox. See “Validation with the Native Validation Framework”.

 Always add the CompareValidator with its Operator set to DataTypeCheck to block formatting errors.

 Add a RangeValidator when you are using the MinValue and MaxValue properties.

 If you have two CurrencyTextBoxes where one needs to be greater, less than, equal or not equal to the other, add a
CompareValidator. Set its ControlToValidate property to the start CurrencyTextBox and ControlToCompare
property to the end CurrencyTextBox.

 If you have two CurrencyTextBoxes where one must be greater or less than the other by a specific number, add the
DifferenceValidator.

 Be sure that server side validation has been correctly set up.

5. Get and set the value using the DoubleValue or DecimalValue property. When databinding, use DoubleBindable.

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid (DES
validation framework) or Page.IsValid (native validation framework) is true.

6. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

 See also “Additional Topics for Using These Controls”.

Use demos here: http://www.peterblum.com/DES/DemoTextBoxes.aspx.

http://www.peterblum.com/DES/DemoTextBoxes.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 88 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Properties for the CurrencyTextBox
Most of the properties are inherited from PeterBlum.DES.TextBox (see “Properties for the Enhanced TextBox”) and
the ASP.NET TextBox (see “System.Web.UI.WebControls.TextBox Members”).

Click on any of these topics to jump to them:

 Getting And Setting The Value Properties

 Editing Properties

 Formatting Properties

 Spinner Properties

The following topics are inherited from DES’s TextBox control:

 Editing Properties

 Behavior Properties

 Appearance Properties

 AutoPostBack Properties

 Value When Blank Properties

 ToolTip Properties

 Hint Properties

 Tab Rules Properties

 Client-Side Functions Properties

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolstextboxmemberstopic.asp�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 89 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Getting And Setting The Value Properties
There are numerous ways to get and set the numeric value of this textbox. Choose the best one for your needs.

Some of these properties are hidden from the Properties Editor as they are only intended to be used programmatically. When
shown, they appear under the “Data” Category.

 DoubleValue (double) – Gets and sets the value for this control using a System.Double value. See also
DecimalValue and other properties in this section as alternatives. You generally access this property programmatically.
This property is preferred over using the Text property. However, you can get and set the value on the Text property so
long as you handle the conversion between string and Double.

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid (when using
a DataTypeCheckValidator) or its own IsValid property is true.

Note: If you attempt to get a value from DoubleValue when the text is incorrectly formatted, you will get a
System.FormatException thrown.

You can set the textbox value to "" either by assigning Text = "" or DoubleValue = System.Double.MinValue.

Note: While .net handles larger values with its System.Decimal type, JavaScript on the client-side is limited to something
close to the range of the System.Double type.

 DecimalValue (decimal) – Gets and sets the value for this control using a System.Decimal value. See also
DoubleValue and other properties in this section as alternatives. You generally access this property programmatically.
This property is preferred over using the Text property. However, you can get and set the value on the Text property so
long as you handle the conversion between string and Decimal.

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid (when using
a DataTypeCheckValidator) or its own IsValid property is true.

Note: If you attempt to get a value from DecimalValue when the text is incorrectly formatted, you will get a
System.FormatException thrown.

You can set the textbox value to "" either by assigning Text = "" or DecimalValue = System.Decimal.MinValue
or call SetEmpty().

Note: While .net handles larger values with its System.Decimal type, on the client-side JavaScript is limited to something
close to the range of the System.Double type.

 DoubleBindable (object) – An alternative to DoubleValue designed for handling multiple types. It accepts either a
decimal, double, single, int32, SqlDecimal, SqlDouble, SqlInt32, null, string, or System.DbNull.Value.

It returns a Double or SqlDouble depending on BindableMode.

It is preferred when using DataBinding, due to its flexibility with data types.

When evaluating a string, the format must represent a decimal or integer value respecting the culture formatting of
PeterBlum.DES.Globals.Page.CultureInfo.

 BindableMode (enum PeterBlum.DES.BindMode) – Determines how the DoubleBindable property returns its value, as
either a double or a System.Data.SqlTypes.SqlDouble.

o Normal – Returns a double when the textbox is valid or null/nothing when the textbox is blank or has an
illegal value. This is the default value.

o SqlTypes – Returns a SqlDouble when the textbox is valid or 3System.DBNull.Value when the textbox
is blank or has an illegal value.

o TwoWay – Use this when you are using System.Web.UI.WebControls.SqlDataSource and other
DataSource web controls to implement two-way databinding. Returns a double when the textbox is valid or
null/nothing when the textbox is blank or has an illegal value.

http://msdn2.microsoft.com/en-us/library/ms227679�
http://msdn2.microsoft.com/en-us/library/ms227679�
http://msdn2.microsoft.com/en-us/library/ms227679�
http://msdn2.microsoft.com/en-us/library/ms178366.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 90 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 DoubleNullable (double) – Requires ASP.NET 2 or higher. Read only. An alternative to DoubleValue that accepts
either a double or null/nothing. When using null/nothing, it clears the textbox.

 DoubleValueOrZero (double) – An alternative to DoubleValue that returns a value even if the text is blank or not a
valid number. When it’s blank or an invalid entry, it returns a value of 0.0. This is a read-only property.

 IsValid (Boolean) – Determines if the contents of the TextBox represent a number. It returns true when it does
represent a number. It always returns false when the Text property is blank (after trimming). Consider using a
DataTypeCheckValidator instead of this property. This is a read only property.

 IsEmpty (Boolean) – Determines if the text is blank (after trimming). You should not attempt to get the field's value
when this returns true because a blank textbox has no value. Consider adding a RequiredTextValidator to this control
to prevent getting blank text fields. This is a read only property.

 MinValue (string) – Set the minimum value of a range. It affects the spinners, up/down arrow key commands, and is
automatically used by the RangeValidator when its own Minimum property is unassigned.

While it’s a string type, it must represent an integer or double value. This property is great for design mode and
ASP.NET Declarative Syntax. When programming, it’s easier to use MinValueAsDouble because it doesn’t require
conversion from your double to a string.

 MaxValue (string) – Set the maximum value of a range. It affects the spinners, up/down arrow key commands, and is
automatically used by the RangeValidator when its own Maximum property is unassigned.

While it’s a string type, it must represent an integer or double value. This property is great for design mode and
ASP.NET Declarative Syntax. When programming, it’s easier to use MaxValueAsDouble because it doesn’t require
conversion from your double to a string.

 MinValueAsDouble (double) – Set the minimum value of a range. Alternative to MinValue that takes a Double. Must
be set programmatically. It affects the spinners, up/down arrow key commands, and is automatically used by the
RangeValidator when its own Minimum property is unassigned.

 MaxValueAsDouble (double) – Set the maximum value of a range. Alternative to MaxValue that takes a Double. Must
be set programmatically. It affects the spinners, up/down arrow key commands, and is automatically used by the
RangeValidator when its own Maximum property is unassigned.

 AllowNegatives (Boolean) – Determines if negative numbers are permitted. When true, they are permitted. It defaults
to true. When false, keyboard filtering will not allow the minus ("-") character, and the DataTypeCheckValidator
will report errors when negative values are entered. It defaults to false.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 91 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Editing Properties
The Properties Editor shows these properties in the category “Editing”.

 ReadOnly (Boolean) – Determines if the textbox is editable or not. When ReadOnly is true, it is not editable.
However, the focus can enter the textbox. You can still permit editing by using the arrow keys (UpDnKeysIncrement =
true) and with the spinners (ShowSpinners = true) by setting ReadOnlyAllowsEdits to true.

 ReadOnlyAllowsEdits (Boolean) – Overrides the ReadOnly property to let spinners and arrow keys edit a read-only
textbox. It defaults to false.

If you don’t want to support arrows, set UpDnKeysIncrement to false.

 UpDnKeysIncrement (Boolean) – Determines if the up and down arrow keys increment and decrement the value.

When true, the up and down arrow keys increment and decrement. When false, they do not.

It defaults to true.

 AcceptPeriodAsDecimalSeparator (Boolean) – Many cultures do not use the period as the decimal separator. It makes
numeric entry from the numeric keypad more difficult, because it features a period key. When setup, both the culture's
decimal separator and a period are allowed as the decimal separator. The textbox will convert the period to the decimal
character.

Does not apply for cultures that already use a period for the decimal separator. Some cultures use a period as a thousands
separator. In those cases, the parser will only consider periods the decimal separator when there is only one period
character and the culture's decimal separator is not found.

When true, the feature is used so long as the current culture's decimal separator is not already a period.

When false, the feature is not used.

It defaults to false.

 UseKeyboardFiltering (Boolean) – When true, the browser filters out characters that are not supported by the data
type. When false, it allows all keystrokes. It defaults to true. Keyboard filtering is automatically disabled on
browsers that do not support DES's client-side code.

The filter for CurrencyTextBox allows only digits, the Currency Symbol
(CultureInfo.NumberFormat.CurrencySymbol), the culture specific decimal point character
(CultureInfo.NumberFormat.NumberDecimalSeparator), minus ("-") and parenthesis. Minus and parenthesis depend
on the AllowNegatives property. If UseCurrencySymbol is true, it also permits the currency symbol in
CultureInfo.NumberFormat.CurrencySymbol.

 OnChangeFunctionName (string) – Allows you to extend the client side onchange event fired when the user exits the
CurrencyTextBox or invokes one of its commands. During the onchange event, the number is validated, reformatted,
and passed along to other objects.

You create a JavaScript function and assign its name to the OnChangeFunctionName property. You can give it any
legal JavaScript name you want.

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

See also “Adding Your JavaScript to the Page”.

Defining the JavaScript Function

Declare a JavaScript function in your page with three parameters:

o TextBoxID (string) - The element ID to the text box of the date text box control. It matches the ClientID
property of the TextBox.

o Value (floating point) - The resulting number in the field. It will be null if the number was invalid or the
textbox was blank.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 92 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

o Error (boolean) – When true, the number was invalid including a bad format or an illegal number. When
false, there is no error or the textbox is blank.

The function does not return anything.

Here is an example function which assigns the number to another CurrencyTextBox whose ID is CTB2:

function MyOnChangeFnc(pTBId, pValue, pError)
{
 if (!pError)
 DES_SetDTTBValue('CTB2', pValue, true); // if pValue=null, CTB2 is blank
}

 OnChangeFunctionAlways (boolean) – Used when OnChangeFunctionName is defined. When
OnChangeFunctionAlways is false, your function will only be called when there is a valid number. When
OnChangeFunctionAlways is true, it will be called on every change. You can detect these cases:

o Valid number: Value parameter is an integer and Error is false.

o Invalid number: Value parameter is null and Error is true.

o Blank textbox: Value parameter is null and Error is false.

See “JavaScript Support Functions” for numerous functions that can assist in your coding efforts.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 93 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Formatting Properties
These properties determine what text is considered valid for a decimal number. In addition, the
PeterBlum.DES.Globals.Page.CultureInfo determines many formatting rules.

 ShowThousandsSeparator (Boolean) – When true, the thousand separator is added into the textbox as it is
reformatted. The thousands separator character is defined in PeterBlum.DES.Globals.Page.CultureInfo. When
false, no thousand characters are shown. If the user had entered them, they would be removed. It defaults to false.

Note: This TextBox always permits entry of the thousands separator regardless of this property.

 UseCurrencySymbol (Boolean) – When true, the user can enter the currency symbol and when the field is
reformatted, the symbol is automatically added. When false, no currency symbol is permitted. It defaults to false.

The currency symbol is defined in the CultureInfo.NumberFormat. Reformatting will always place it in the correct
position for the culture (before or after the number; inside or outside the negative symbol.)

 AllowExtraDecimalDigits (Boolean) – When true, the user can enter more decimal digits than defined by the
CultureInfo.NumberFormat.CurrencyDecimalDigits. When false, an error is reported when the decimal digits
exceeds CultureInfo.NumberFormat.CurrencyDecimalDigits. It defaults to false.

 HideDecimalWhenZero (Boolean) – When true, a number with only zeros in the decimal portion omits the decimal
portion when the value is reformatted. Useful when large currencies are expected. For example, text entered as “12.0” is
reformatted “12” while “12.1” is reformatted to “12.10”. It defaults to false.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 94 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Spinner Properties
The Spinner is an extension to the CurrencyTextBox. It provides a pair of arrow buttons that increment or decrement the
value of the textbox when clicked. You can customize the button appearance and autorepeat speed with properties on
PeterBlum.DES.Globals.Page.SpinnerManager. It respects the limits established with the MinValue and MaxValue
properties.

The following properties are identified in the category “Spinner” under the Properties Editor:

 ShowSpinner (Boolean) – When true, the spinner control is shown. When false, it is not. It defaults to false.

 IncrementValue (Double) – The number to add or subtract to the current value. It supports decimal values. It defaults to
1.0.

 ContainerMode (enum PeterBlum.DES.ContainerMode) – When the spinner is shown, the HTML output looks like
this:

<input type='text' [attributes]/><table>[spinner buttons]<table/>

When you assign absolute positioning (“gridlayout”), the style attribute used for absolute positioning would normally get
assigned to the <input> tag, only affecting its position. If nothing else was done, you would see the textbox in the
correct location while the buttons would be elsewhere on the page.

In addition, these tags can wrap around, especially when placed in a <p> tag or a table cell that is too small. The
spinners appear below the textbox when that happens.

Use the ContainerMode property to add either a or <table> tag around this control that limits wrap around.
This property is only used when you are showing spinners. When using absolute positioning, the styles used for
positioning are moved into the container tag so all of this control’s tags are grouped under a common position.

The enumerated type PeterBlum.DES.ContainerMode has these values:

o None – Do not create a container. Use it when you want to create your own container or otherwise control the
formatting. If you need to absolutely position this control, you must assign the styles for absolute positioning to
your own container.

o Auto – Creates either a or <table> depending on the browser’s support of these styles: white-
space:nowrap (used by) and display:inline-block (used by <table>). Internet Explorer
5+ and the Mozilla-based browsers support white-space:nowrap (as determined by the
PeterBlum.DES.Globals.Page.Browser.MakeWhiteSpaceNoWrap property.) Opera 7+ and Safari support
display:inline-block (as determined by the
PeterBlum.DES.Globals.Page.Browser.MakeBlockInlineValue property.)

This is the default.

Note: A tag generates much smaller HTML than the <table> tag.

o Span – Creates a tag. It uses the style white-space:nowrap to prevent wrapping. Some
browsers do not support this style and it will be omitted, leaving the control susceptible to wrapping on those
browsers. (The PeterBlum.DES.Globals.Page.Browser.MakeWhiteSpaceNoWrap property determines
support for this style.)

The tag will also be assigned the style vertical-align:text-bottom to keep all elements in a
reasonable layout. Yet, some browsers do not make the alignments for this style as well as Internet Explorer and
Mozilla-based browsers.

o Table – Creates a <table> around the controls with each HTML element in its own table cell. While this is
the most reliable, it has these limitations on browsers other than Internet Explorer for Windows, Mozilla,
FireFox, and Netscape 6+:

Some browsers do not support the display:inline or display:inline-block style required to
position the table inside a row of text. A tag will be generated instead.

It uses the style vertical-align:middle to attempt to align all elements. Yet, some browsers do not
make the alignments for this style as well as Internet Explorer and Mozilla-based browsers.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 95 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

It sets padding and margin styles to 0px on all sides of the cells. It sets cellpadding and
cellspacing to 0 as well. These attempt to remove any shifting imposed by the table’s margins. Yet, some
browsers do not make the positioning as well as Internet Explorer and Mozilla-based browsers. You may notice
misalignment with other elements in the same row.

Note: A tag generates much smaller HTML than the <table> tag.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 96 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

PercentTextBox Control
The PeterBlum.DES.PercentTextBox is a TextBox designed for percent data entry. It knows how to convert a
System.Double and System.Integer types into text and back. It has properties to determine the number of decimal
places or even restrict to integer entry, if it supports negative numbers and shows the percent symbol. You can add a spinner
control for the user to increment the value.

Click on any of these topics to jump to them:

 Features

 Using the PercentTextBox

 Getting and Setting the Value of the TextBox

 Formatting The Text

 Adding A Spinner

 Connecting Data To Other Fields On The Client-Side

 When the TextBox is Empty

 Validation on AutoPostBack

 Interactive Hints

 AutoComplete and “Smart Change System”

 Other Behaviors

 Adding a PercentTextBox

 Properties for the PercentTextBox

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 97 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Features
Use demos here: http://www.peterblum.com/DES/DemoTextBoxes.aspx.

 It subclasses from PeterBlum.DES.TextBox, inheriting all of its qualities. See “Enhanced TextBox”.

 Handles integer and decimal formats. You can lock out decimal entry if you like.

 It optionally includes the percent symbol in the text.

 Get and set the value of the textbox using an integer, double, or decimal data type instead of a string, avoiding you
having to write conversion code.

 Set a property to allow or prevent entry of negative numbers.

 It is culture sensitive, respecting the CultureInfo object defined on the PeterBlum.DES.Globals.Page.CultureInfo
property.

 On the client-side, it filters keystrokes so users can only enter characters suitable to for integer entry.

 On the client-side, it reformats if needed as the user exits the textbox. For example, if the user enters “1000”, it reformats
to “1,000” (when showing the optional thousands separator.)

 When you attach a Validator to them, the Validator automatically configures itself to evaluate an integer with the other
data entry rules specified on this control.

 Use a spinner control (up and down arrows to the right of the textbox) to increment the value.

 Use up and down arrow keys to increment the value.

http://www.peterblum.com/DES/DemoTextBoxes.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 98 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Using the PercentTextBox
Use demos here: http://www.peterblum.com/DES/DemoTextBoxes.aspx.

The PeterBlum.DES.PercentTextBox is subclassed from PeterBlum.DES.TextBox, which is an enhanced
version of the TextBox control supplied with ASP.NET. If you know how to use the ASP.NET TextBox, you already know
how to use this control. See “Using the Enhanced TextBox Control”.

Click on any of these topics to jump to them:

 Getting and Setting the Value of the TextBox

 Formatting The Text

 Adding A Spinner

 Connecting Data To Other Fields On The Client-Side

The following topics are inherited from DES’s TextBox control:

 When the TextBox is Empty

 Validation on AutoPostBack

 Interactive Hints

 AutoComplete and “Smart Change System”

 Other Behaviors

http://www.peterblum.com/DES/DemoTextBoxes.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 99 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Getting and Setting the Value of the TextBox
When getting or setting the value, use the IntegerValue, DoubleValue, or DecimalValue property instead of the Text
property. These properties convert your integer or double into the localized text shown in the textbox.

If you are using DataBinding, consider these alternative properties: DoubleBindable and IntegerBindable.

By default, whole number entry is offered. If you want decimal entry set WholeNumbersOnly to false and limit the
number of decimal places with MaxDecimalPlaces.

By default, negatives are not permitted. If allow negative percentages, set AllowNegatives to true. The
DataTypeCheckValidator will respect this setting and report an error when a negative number is found.

You can check for a blank textbox by checking the IsEmpty property for true. The PercentTextBox also contain an invalid
entry, such as an illegal characters or badly formatted entry. You can check for an invalid entry by checking the IsValid
property for false, although a validator should avoid having to test for an invalid value.

When you need a server side event that is fired when the textbox’s value has changed, use the TextChanged event.

Data Entry Validation

Consider validation a manditory part of data entry, whether it’s a PercentTextBox or just an ordinary textbox. It prevents
illegal entries from getting into your database. Even if the PercentTextBox enforces some rules for you, users may not have a
browser that supports the client-side code for the PercentTextBox, or its validators for that matter. Hackers often turn off
javascript in their browser in hopes that your server side code doesn’t protect against their illegal data.

Validation Guidelines:

 At minimum, validate the percentage number format with one of these validators.

o When using the DES Validation Framework, assign a DataTypeCheckValidator to each PercentTextBox. (See
the Validation User’s Guide.)

o When using the Native Validation Framework, use DES’s CompareValidator with the Operator property set to
DataTypeCheck. (This validator is in the PeterBlum.DES.NativeValidators assembly. If you haven’t
done so, add this assembly to its own tab in the Visual Studio/VWD toolbox. See the Installation Guide for
details.) See “Validation with the Native Validation Framework”.

 Set up server side validation.

o When using DES’s validation framework, test PeterBlum.DES.Globals.Page.IsValid in your postback event
handler methods. Only use the data if it is true.

o When using the native validation framework, test Page.IsValid in your postback event handler. Only use the
data if it is true.

 You can establish a numeric range to prevent selection outside the range using MinValue and MaxValue. By default,
these establish the range of 0 to 100. Add the RangeValidator to report errors when the user types numbers outside the
range. DES provides two RangeValidators, one for its own validation framework and the other for the native validation
framework. Choose the correct one. Do not use the original RangeValidator that comes with ASP.NET.

Alternatively, if you feel an out of range value can be reported under the error message from your
DataTypeCheckValidator (or CompareValidator in the Native Validation Framework), set the
DataTypeCheckReportsRangeErrors to true.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox.textchanged.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 100 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Formatting The Text
DES uses the System.Globalization.CultureInfo class to define most numeric formatting rules. You establish the desired
CultureInfo on the PeterBlum.DES.Globals.Page.CultureInfo property. Percentages use the following values from
CultureInfo.NumberFormat:

 Decimal place character from CultureInfo.NumberFormat.NumberDecimalSeparator. Not
PercentDecimalSeparator.

 Thousands separator from CultureInfo.NumberFormat.NumberGroupSeparator. Not PercentGroupSeparator.

 Positive and negative number format when showing a percent symbol from
CultureInfo.NumberFormat.PercentPositivePattern and CultureInfo.NumberFormat.PercentNegativePattern. When
not showing a percent symbol, from CultureInfo.NumberFormat.NumberPositivePattern and
CultureInfo.NumberFormat.NumberNegativePattern.

Other Formatting Rules

To show the percent symbol, set UsePercentSymbol to true.

To show thousands separators, set ShowThousandsSeparator to true.

http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo(vs.71).aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 101 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Adding A Spinner
A Spinner is a control with two arrows that appear to the right of the textbox. For example:

When the user clicks on an arrow, it increments or decrements the value. If they hold down the button, it repeatedly changes
the value and after 5 cycles, its speed increases.

To use the Spinner, set ShowSpinner to true. Use the SpinnerManager object to change the URL to the arrow button
images and the auto repeat speed. (SpinnerManager is a property of PeterBlum.DES.Globals.Page and the PageManager
control.)

Note: Spinners are only supported on these browsers: IE Windows 5+, Netscape 7+, Mozilla 1.1+, FireFox, Opera 7+, and
Safari.

If you have client-side code that shows or hides the textbox, call the function DES_Refresh() to tell DES to change the
visibility of the spinners. This is handled automatically when using the FieldStateController.

When the spinner is shown, the control attempts to keep the spinner side-by-side with the textbox by enclosing the two
elements in either a or <table> tag, depending on the browser. If you want to remove the enclosure, set
ContainerMode to None.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 102 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Connecting Data To Other Fields On The Client-Side
Often users want to update other textboxes and labels when a value is changed in a PercentTextBox. Use the
CalculationController to perform math based on these textboxes. It can update a textbox or label for you. See the Peter’s
Interactive Pages User’s Guide.

For other situations, write your own client-side JavaScript code. DES supplies a number of JavaScript functions to greatly
simplify working with the PercentTextBoxes on the client-side. See “JavaScript Support Functions”.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 103 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Adding a PercentTextBox
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Add a PercentTextBox control to the page.

Visual Studio and Visual Web Developer Design Mode Users

Drag the PercentTextBox control from the Toolbox onto your web form.

Text Entry Users

 Add the control (inside the <form> area):

<des:PercentTextBox id="[YourControlID]" runat="server" />

Programmatically creating the PercentTextBox control

 Identify the control which you will add the PercentTextBox control to its Controls collection. Like all ASP.NET
controls, the TextBox can be added to any control that supports child controls, like Panel, User Control, or
TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location and use the
PlaceHolder.

 Create an instance of the PercentTextBox control class. The constructor takes no parameters.

 Assign the ID property.

 Add the PercentTextBox control to the Controls collection.

In this example, the PercentTextBox is created with an ID of “PercentTextBox1”. It is added to PlaceHolder1.

[C#]

PeterBlum.DES.PercentTextBox vTextBox = new PeterBlum.DES.PercentTextBox();
vTextBox.ID = "PercentTextBox1";
PlaceHolder1.Controls.Add(vTextBox);

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add a using clause to that namespace on your
form.

 [VB]

Dim vTextBox As PeterBlum.DES.PercentTextBox = _
 New PeterBlum.DES.PercentTextBox()
vTextBox.ID = "PercentTextBox1"
PlaceHolder1.Controls.Add(vTextBox)

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add an Imports clause to that namespace on
your form.

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

3. Set the properties associated with the PercentTextBox. See “Properties for the PercentTextBox”.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 104 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

4. By default, a range is established of 0 to 100. If you need to change the range, use MinValue and MaxValue properties
to the range.

5. Assign Validators to the TextBox.

Using DES Validation Framework

See the Validation User’s Guide for details on these validators.

 Always add the DataTypeCheckValidator to block formatting errors.

 Add a RangeValidator unless you have disabled the MinValue and MaxValue properties.

 If you have two PercentTextBoxes where one needs to be greater, less than, equal or not equal to the other, add a
CompareTwoFieldsValidator.

 If you have two PercentTextBoxes where one must be greater or less than the other by a specific number, add a
DifferenceValidator. Specify the number in the DifferenceValue property.

 Be sure that server side validation has been correctly set up.

Using Native Validation Framework

These validators are found in the PeterBlum.DES.NativeValidators assembly. Do not use the original
CompareValidator and RangeValidator that come with ASP.NET because they don’t handle the rich data entry formats
of the PercentTextBox. See “Validation with the Native Validation Framework”.

 Always add the CompareValidator with its Operator set to DataTypeCheck to block formatting errors.

 Add a RangeValidator unless you have disabled the MinValue and MaxValue properties.

 If you have two PercentTextBoxes where one needs to be greater, less than, equal or not equal to the other, add a
CompareValidator. Set its ControlToValidate property to the start PercentTextBox and ControlToCompare
property to the end PercentTextBox.

 If you have two PercentTextBoxes where one must be greater or less than the other by a specific number, add the
DifferenceValidator.

 Be sure that server side validation has been correctly set up.

6. Get and set the value using the IntegerValue, DoubleValue or DecimalValue property. When databinding, use
IntegerBindable or DoubleBindable.

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid (DES
validation framework) or Page.IsValid (native validation framework) is true.

7. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

 See also “Additional Topics for Using These Controls”.

Use demos here: http://www.peterblum.com/DES/DemoTextBoxes.aspx.

http://www.peterblum.com/DES/DemoTextBoxes.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 105 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Properties for the PercentTextBox
Most of the properties are inherited from PeterBlum.DES.TextBox (see “Properties for the Enhanced TextBox”) and
the ASP.NET TextBox (see “System.Web.UI.WebControls.TextBox Members”).

Click on any of these topics to jump to them:

 Getting And Setting The Value Properties

 Editing Properties

 Formatting Properties

 Spinner Properties

The following topics are inherited from DES’s TextBox control:

 Editing Properties

 Behavior Properties

 Appearance Properties

 AutoPostBack Properties

 Value When Blank Properties

 ToolTip Properties

 Hint Properties

 Tab Rules Properties

 Client-Side Functions Properties

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolstextboxmemberstopic.asp�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 106 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Getting And Setting The Value Properties
There are numerous ways to get and set the numeric value of this textbox. Choose the best one for your needs.

Some of these properties are hidden from the Properties Editor as they are only intended to be used programmatically. When
shown, they appear under the “Data” Category.

 IntegerValue (integer) – Gets and sets the value for this control using a System.Int32 value. See also DoubleValue,
DecimalValue, and other properties that follow as alternatives. You generally access this property programmatically.
This property is preferred over using the Text property. However, you can get and set the value on the Text property so
long as you handle the conversion between string and integer.

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid (when using
a DataTypeCheckValidator) or its own IsValid property is true.

Note: If you attempt to get a value from IntegerValue when the text is incorrectly formatted, you will get a
System.FormatException thrown.

You can set the textbox value to "" either by assigning Text = "" or IntegerValue = System.Int32.MinValue or
call SetEmpty().

 DoubleValue (double) – Gets and sets the value for this control using a System.Double value. See also
DecimalValue, IntegerValue, and other properties in this section as alternatives. You generally access this property
programmatically. This property is preferred over using the Text property. However, you can get and set the value on the
Text property so long as you handle the conversion between string and Double.

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid (when using
a DataTypeCheckValidator) or its own IsValid property is true.

Note: If you attempt to get a value from DoubleValue when the text is incorrectly formatted, you will get a
System.FormatException thrown.

You can set the textbox value to "" either by assigning Text = "" or DoubleValue = System.Double.MinValue or
call SetEmpty().

Note: While .net handles larger values with its System.Decimal type, on the client-side JavaScript is limited to something
close to the range of the System.Double type.

 DecimalValue (decimal) – Gets and sets the value for this control using a System.Decimal value. See also
DoubleValue, IntegerValue, and other properties in this section as alternatives. You generally access this property
programmatically. This property is preferred over using the Text property. However, you can get and set the value on the
Text property so long as you handle the conversion between string and Decimal.

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid (when using
a DataTypeCheckValidator) or its own IsValid property is true.

Note: If you attempt to get a value from DecimalValue when the text is incorrectly formatted, you will get a
System.FormatException thrown.

You can set the textbox value to "" either by assigning Text = "" or DecimalValue = System.Decimal.MinValue
or call SetEmpty().

Note: While .net handles larger values with its System.Decimal type, on the client-side JavaScript is limited to something
close to the range of the System.Double type.

 IntegerValueOrZero (double) – An alternative to IntegerValue that returns a value even if the text is blank or not a
valid number. When its blank or an invalid entry, it returns a value of 0. This is a read-only property.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 107 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 IntegerBindable (object) – An alternative to IntegerValue designed for handling multiple types. It accepts either a byte,
sbyte, int16, int32, SqlInt16, SqlInt32, null, string, or System.DbNull.Value.

It returns a integer (System.Int32) or Sql32 depending on BindableMode.

It is preferred when using DataBinding, due to its flexibility with data types.

When evaluating a string, the format must represent an integer value respecting the culture formatting of
PeterBlum.DES.Globals.Page.CultureInfo.

 DoubleBindable (object) – An alternative to DoubleValue designed for handling multiple types. It accepts either a
decimal, double, single, int32, SqlDecimal, SqlDouble, SqlInt32, null, string, or System.DbNull.Value.

It returns a Double or SqlDouble depending on BindableMode.

It is preferred when using DataBinding, due to its flexibility with data types.

When evaluating a string, the format must represent a decimal or integer value respecting the culture formatting of
PeterBlum.DES.Globals.Page.CultureInfo.

 BindableMode (enum PeterBlum.DES.BindMode) – Determines how the IntegerBindable and DoubleBindable
properties returns its value, as either a native type (32 bit integer or double) or a System.Data.SqlTypes type
(SqlInteger or SqlDouble).

o Normal – Returns an integer or double when the textbox is valid or null/nothing when the textbox is
blank or has an illegal value. This is the default value.

o SqlTypes – Returns a SqlInteger or SqlDouble when the textbox is valid or 3System.DBNull.Value
when the textbox is blank or has an illegal value.

o TwoWay – Use this when you are using System.Web.UI.WebControls.SqlDataSource and other
DataSource web controls to implement two-way databinding. Returns an integer or double when the textbox is
valid or null/nothing when the textbox is blank or has an illegal value.

 IntegerNullable (integer) – Requires ASP.NET 2 or higher. Read only. An alternative to IntegerValue that excepts
either an integer (System.Int32) or null/nothing. When using null/nothing, it clears the textbox.

 DoubleNullable (double) – Requires ASP.NET 2 or higher. Read only. An alternative to DoubleValue that excepts
either a double or null/nothing. When using null/nothing, it clears the textbox.

 IsValid (Boolean) – Determines if the contents of the TextBox represent a number. It returns true when it does
represent a number. It always returns false when the Text property is blank (after trimming). Consider using a
DataTypeCheckValidator instead of this property. This is a read only property.

 IsEmpty (Boolean) – Determines if the text is blank (after trimming). You should not attempt to get the field's value
when this returns true because a blank textbox has no value. Consider adding a RequiredTextValidator to this control
to prevent getting blank text fields. This is a read only property.

 WholeNumbersOnly (boolean) – Determines if the PercentTextbox only accepts and displays the whole number, with
Percent formatting.

If you assign a value that has decimal places, they are stripped, leaving only the whole number part. No rounding is
applied. If you need a specific type of rounding, do it before assigning the value to this control.

When true, decimals are prevented, both in keyboard entry and formatting.

When false, decimals are allowed.

It defaults to true.

 MinValue (string) – Set the minimum value of a range. It affects the spinners, up/down arrow key commands, and is
automatically used by the RangeValidator when its own Minimum property is unassigned.

While it’s a string type, it must represent an integer or double value. This property is great for design mode and
ASP.NET Declarative Syntax. When programming, it’s easier to use MinValueAsInteger or MinValueAsDouble
because they don’t require conversion from your integer or double to a string.

http://msdn2.microsoft.com/en-us/library/ms227679�
http://msdn2.microsoft.com/en-us/library/ms227679�
http://msdn2.microsoft.com/en-us/library/ms227679�
http://msdn2.microsoft.com/en-us/library/ms178366.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 108 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 MaxValue (string) – Set the maximum value of a range. It affects the spinners, up/down arrow key commands, and is
automatically used by the RangeValidator when its own Maximum property is unassigned.

While it’s a string type, it must represent an integer or double value. This property is great for design mode and
ASP.NET Declarative Syntax. When programming, it’s easier to use MaxValueAsInteger or MaxValueAsDouble
because they don’t require conversion from your integer or double to a string.

 MinValueAsInteger (Integer) – Set the minimum value of a range. Alternative to MinValue that takes an integer. Must
be set programmatically. It affects the spinners, up/down arrow key commands, and is automatically used by the
RangeValidator when its own Minimum property is unassigned.

 MaxValueAsInteger (Integer) – Set the maximum value of a range. Alternative to MaxValue that takes an integer.
Must be set programmatically. It affects the spinners, up/down arrow key commands, and is automatically used by the
RangeValidator when its own Maximum property is unassigned.

 MinValueAsDouble (double) – Set the minimum value of a range. Alternative to MinValue that takes a Double. Must
be set programmatically. It affects the spinners, up/down arrow key commands, and is automatically used by the
RangeValidator when its own Minimum property is unassigned.

 MaxValueAsDouble (double) – Set the maximum value of a range. Alternative to MaxValue that takes a Double. Must
be set programmatically. It affects the spinners, up/down arrow key commands, and is automatically used by the
RangeValidator when its own Maximum property is unassigned.

 AllowNegatives (Boolean) – Determines if negative numbers are permitted. When true, they are permitted. It defaults
to true. When false, keyboard filtering will not allow the minus ("-") character, and the DataTypeCheckValidator
will report errors when negative values are entered. It defaults to false.

 MaxDecimalPlaces (Integer) – Determines the maximum number of decimal places allowed. When the user enters
more, it is an error which the DataTypeCheckValidator will detect.

Set to 0 to ignore this property. It defaults to 0.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 109 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Editing Properties
The Properties Editor shows these properties in the category “Editing”.

 ReadOnly (Boolean) – Determines if the textbox is editable or not. When ReadOnly is true, it is not editable.
However, the focus can enter the textbox. You can still permit editing by using the arrow keys (UpDnKeysIncrement =
true) and with the spinners (ShowSpinners = true) by setting ReadOnlyAllowsEdits to true.

 ReadOnlyAllowsEdits (Boolean) – Overrides the ReadOnly property to let spinners and arrow keys edit a read-only
textbox. It defaults to false.

If you don’t want to support arrows, set UpDnKeysIncrement to false.

 UpDnKeysIncrement (Boolean) – Determines if the up and down arrow keys increment and decrement the value.

When true, the up and down arrow keys increment and decrement. When false, they do not.

It defaults to true.

 AcceptPeriodAsDecimalSeparator (Boolean) – Many cultures do not use the period as the decimal separator. It makes
numeric entry from the numeric keypad more difficult, because it features a period key. When setup, both the culture's
decimal separator and a period are allowed as the decimal separator. The textbox will convert the period to the decimal
character.

Does not apply for cultures that already use a period for the decimal separator. Some cultures use a period as a thousands
separator. In those cases, the parser will only consider periods the decimal separator when there is only one period
character and the culture's decimal separator is not found.

When true, the feature is used so long as the current culture's decimal separator is not already a period.

When false, the feature is not used.

It defaults to false.

 UseKeyboardFiltering (Boolean) – When true, the browser filters out characters that are not supported by the data
type. When false, it allows all keystrokes. It defaults to true. Keyboard filtering is automatically disabled on
browsers that do not support DES's client-side code.

The filter for PercentTextBox allows only digits, the Percent Symbol (CultureInfo.NumberFormat.PercentSymbol),
the culture specific decimal point character (CultureInfo.NumberFormat.NumberDecimalSeparator) and minus ("-").
Minus depends on the AllowNegatives property. Percent symbol depends on the UsePercentSymbol property.

 OnChangeFunctionName (string) – Allows you to extend the client side onchange event fired when the user exits the
PercentTextBox or invokes one of its commands. During the onchange event, the number is validated, reformatted, and
passed along to other objects.

You create a JavaScript function and assign its name to the OnChangeFunctionName property. You can give it any
legal JavaScript name you want.

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

See also “Adding Your JavaScript to the Page”.

Defining the JavaScript Function

Declare a JavaScript function in your page with three parameters:

o TextBoxID (string) - The element ID to the text box of the date text box control. It matches the ClientID
property of the TextBox.

o Value (floating point) - The resulting number in the field. It will be null if the number was invalid or the
textbox was blank.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 110 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

o Error (boolean) – When true, the number was invalid including a bad format or an illegal number. When
false, there is no error or the textbox is blank.

The function does not return anything.

Here is an example function which assigns the number to another PercentTextBox whose ID is PTB2:

function MyOnChangeFnc(pTBId, pValue, pError)
{
 if (!pError)
 DES_SetDTTBValue('PTB2', pValue, true); // if pValue=null, PTB2 is blank
}

 OnChangeFunctionAlways (boolean) – Used when OnChangeFunctionName is defined. When
OnChangeFunctionAlways is false, your function will only be called when there is a valid number. When
OnChangeFunctionAlways is true, it will be called on every change. You can detect these cases:

o Valid number: Value parameter is an integer and Error is false.

o Invalid number: Value parameter is null and Error is true.

o Blank textbox: Value parameter is null and Error is false.

See “JavaScript Support Functions” for numerous functions that can assist in your coding efforts.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 111 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Formatting Properties
These properties determine what text is considered valid for a decimal number. In addition, the
PeterBlum.DES.Globals.Page.CultureInfo determines many formatting rules.

 UsePercentSymbol (Boolean) – Determines if the percent symbol can appear in the text.

When true, the percent symbol appears upon reformat and is allowed during entry.
PeterBlum.DES.Globals.Page.CultureInfo.NumberFormat.PercentSymbol defines the character representing the
percent symbol. Reformatting follows the CultureInfo.NumberFormatInfo.PercentPositivePattern and
PercentNegativePattern properties.

It defaults to false.

 ShowThousandsSeparator (Boolean) – When true, the thousand separator is added into the textbox as it is
reformatted. The thousands separator character is defined in PeterBlum.DES.Globals.Page.CultureInfo. When
false, no thousand characters are shown. If the user had entered them, they would be removed. It defaults to false.

Note: This TextBox always permits entry of the thousands separator regardless of this property.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 112 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Spinner Properties
The Spinner is an extension to the PercentTextBox. It provides a pair of arrow buttons that increment or decrement the value
of the textbox when clicked. You can customize the button appearance and autorepeat speed with properties on
PeterBlum.DES.Globals.Page.SpinnerManager. It respects the limits established with the MinValue and MaxValue
properties.

The following properties are identified in the category “Spinner” under the Properties Editor:

 ShowSpinner (Boolean) – When true, the spinner control is shown. When false, it is not. It defaults to false.

 IncrementValue (Double) – The number to add or subtract to the current value. It supports decimal values. It defaults to
1.0.

 ContainerMode (enum PeterBlum.DES.ContainerMode) – When the spinner is shown, the HTML output looks like
this:

<input type='text' [attributes]/><table>[spinner buttons]<table/>

When you assign absolute positioning (“gridlayout”), the style attribute used for absolute positioning would normally get
assigned to the <input> tag, only affecting its position. If nothing else was done, you would see the textbox in the
correct location while the buttons would be elsewhere on the page.

In addition, these tags can wrap around, especially when placed in a <p> tag or a table cell that is too small. The
spinners appear below the textbox when that happens.

Use the ContainerMode property to add either a or <table> tag around this control that limits wrap around.
This property is only used when you are showing spinners. When using absolute positioning, the styles used for
positioning are moved into the container tag so all of this control’s tags are grouped under a common position.

The enumerated type PeterBlum.DES.ContainerMode has these values:

o None – Do not create a container. Use it when you want to create your own container or otherwise control the
formatting. If you need to absolutely position this control, you must assign the styles for absolute positioning to
your own container.

o Auto – Creates either a or <table> depending on the browser’s support of these styles: white-
space:nowrap (used by) and display:inline-block (used by <table>). Internet Explorer
5+ and the Mozilla-based browsers support white-space:nowrap (as determined by the
PeterBlum.DES.Globals.Page.Browser.MakeWhiteSpaceNoWrap property.) Opera 7+ and Safari support
display:inline-block (as determined by the
PeterBlum.DES.Globals.Page.Browser.MakeBlockInlineValue property.)

This is the default.

Note: A tag generates much smaller HTML than the <table> tag.

o Span – Creates a tag. It uses the style white-space:nowrap to prevent wrapping. Some
browsers do not support this style and it will be omitted, leaving the control susceptible to wrapping on those
browsers. (The PeterBlum.DES.Globals.Page.Browser.MakeWhiteSpaceNoWrap property determines
support for this style.)

The tag will also be assigned the style vertical-align:text-bottom to keep all elements in a
reasonable layout. Yet, some browsers do not make the alignments for this style as well as Internet Explorer and
Mozilla-based browsers.

o Table – Creates a <table> around the controls with each HTML element in its own table cell. While this is
the most reliable, it has these limitations on browsers other than Internet Explorer for Windows, Mozilla,
FireFox, and Netscape 6+:

Some browsers do not support the display:inline or display:inline-block style required to
position the table inside a row of text. A tag will be generated instead.

It uses the style vertical-align:middle to attempt to align all elements. Yet, some browsers do not
make the alignments for this style as well as Internet Explorer and Mozilla-based browsers.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 113 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

It sets padding and margin styles to 0px on all sides of the cells. It sets cellpadding and
cellspacing to 0 as well. These attempt to remove any shifting imposed by the table’s margins. Yet, some
browsers do not make the positioning as well as Internet Explorer and Mozilla-based browsers. You may notice
misalignment with other elements in the same row.

Note: A tag generates much smaller HTML than the <table> tag.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 114 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

FilteredTextBox Control
The FilteredTextBox prevents the user from entering invalid characters into a textbox. You specify the set of characters that
are valid or invalid. It does not establish any pattern where specific characters belong. Use a RegexValidator to validate that
the characters also match to a pattern. Alternatively, use the MultiSegmentDataEntry control instead of the FilteredTextBox
for strongly patterned text.

Click on any of these topics to jump to them:

 Features

 Using the FilteredTextBox

 Setting the Character Set

 Getting and Setting the Value of the TextBox

 When the TextBox is Empty

 Validation on AutoPostBack

 Interactive Hints

 AutoComplete and “Smart Change System”

 Other Behaviors

 Adding a FilteredTextBox Control

 Properties of the FilteredTextBox

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 115 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Features
Use demos here: http://www.peterblum.com/DES/DemoFiltered.aspx.

The PeterBlum.DES.FilteredTextBox prevents the user from entering invalid characters into a textbox. You specify
the set of characters that are valid or invalid.

It does not apply a pattern to the characters entered. Users can enter any character from the set of characters at any location
and for as many times as desired. Typically you will use a RegexValidator or the MultiSegmentDataEntry control to verify
that the text matches a pattern.

The CharacterValidator intelligently configures itself to the settings you assign to the FilteredTextBox so that you don’t have
to do it twice.

Some common uses of this control are:

 Password definition
 Person’s name (usually doesn’t have punctuation or numbers)
 Phone number
 Credit card number

The PeterBlum.DES.FilteredTextBox inherits all of the features of the Enhanced TextBox.

http://www.peterblum.com/DES/DemoFiltered.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 116 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Using the FilteredTextBox
Use demos here: http://www.peterblum.com/DES/DemoFiltered.aspx.

The PeterBlum.DES.FilteredTextBox is subclassed from PeterBlum.DES.TextBox, which is an enhanced
version of the TextBox control supplied with ASP.NET. If you know how to use the ASP.NET TextBox, you already know
how to use this control. See “Using the Enhanced TextBox Control”.

Click on any of these topics to jump to them:

 Setting the Character Set

The following topics are inherited from DES’s TextBox control:

 Getting and Setting the Value of the TextBox

 When the TextBox is Empty

 Validation on AutoPostBack

 Interactive Hints

 AutoComplete and “Smart Change System”

 Other Behaviors

Setting the Character Set
To establish keystroke filtering, you define the character set that you want to allow or omit. The properties
LettersUppercase, LettersLowercase, Digits, and Space make it easy to define these common types of characters. Each of
these is a Boolean value. Set it to true to add to use its characters.

These properties provide some categorized charactersets: Punctuation, CurrencySymbols, EnclosureSymbols,
MathSymbols, and VariousSymbols.

For any other character, or for a subset of the predefined character definitions, add all the desired characters into the
OtherCharacters property.

For example, if you want all letters, all digits, underscore and period, this is how to set the properties:

<des:FilteredTextBox id="FilteredTextBox1" runat="server"
 LettersUppercase="True" LettersLowercase="True" Digits="True"
 OtherCharacters="_." />

If you want to omit the set of characters from the field, set the Exclude property to true.

If you have set the TextMode property to Multiline, use the Enter property to determine if the ENTER key is permitted
or not.

http://www.peterblum.com/DES/DemoFiltered.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 117 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Adding a FilteredTextBox Control
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Add a FilteredTextBox control to the page.

Visual Studio and Visual Web Developer Design Mode Users

Drag the FilteredTextBox control from the Toolbox onto your web form.

Text Entry Users

Add the control (inside the <form> area):

<des:FilteredTextBox id="[YourControlID]" runat="server" />

Programmatically creating the FilteredTextBox control

 Identify the control which you will add the FilteredTextBox control to its Controls collection. Like all ASP.NET
controls, the TextBox can be added to any control that supports child controls, like Panel, User Control, or
TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location and use the
PlaceHolder.

 Create an instance of the FilteredTextBox control class. The constructor takes no parameters.

 Assign the ID property.

 Add the FilteredTextBox control to the Controls collection.

In this example, the FilteredTextBox is created with an ID of “FilteredTextBox1”. It is added to PlaceHolder1.

[C#]

PeterBlum.DES.FilteredTextBox vTextBox = new PeterBlum.DES.FilteredTextBox();
vTextBox.ID = "FilteredTextBox1";
PlaceHolder1.Controls.Add(vTextBox);

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add a using clause to that namespace on your
form.

 [VB]

Dim vTextBox As PeterBlum.DES.FilteredTextBox = _
 New PeterBlum.DES.FilteredTextBox()
vTextBox.ID = "FilteredTextBox1"
PlaceHolder1.Controls.Add(vTextBox)

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add an Imports clause to that namespace on
your form.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 118 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

3. Set the properties associated with the FilteredTextBox. See “Properties of the FilteredTextBox”.

4. Assign Validators to the TextBox. At minimum, assign the CharacterValidator because when JavaScript is not available,
the user can enter anything. At runtime, it will automatically configure its properties to match those on the
FilteredTextBox. If you need to validate a pattern, use the RegexValidator instead of the CharacterValidator. See the
Validators User’s Guide.

Using DES Validation Framework

See the Validation User’s Guide for details on these validators.

 Always add one of these validators to block formatting errors because when JavaScript is not available, the user can
enter anything:

o Use the CharacterValidator when there is no pattern to the text. At runtime, it will automatically configure its
properties to match those on the FilteredTextBox.

o Use the RegexValidator when there is a pattern to your text. Make sure your regular expression prevents illegal
characters.

 Is this data a candidate for a SQL Injection or Cross Site Scripting attack? Use the PageSecurityValidator or
FieldSecurityValidator. See Input Security User’s Guide for details.

 Always set up server side validation. Test PeterBlum.DES.Globals.Page.IsValid in your postback event handler
methods. Only use the data if it is true.

Using Native Validation Framework

 Always add the RegularExpressionValidator to block formatting errors because when JavaScript is not available, the
user can enter anything.

See http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:RegExp for regular
expression assistance.

When there is no pattern to the text, here is the usual regular expression pattern.

^[legal characters here]*$

^[^illegal characters here]*$

See Examples.

When there is a pattern to your text, see this site for assistance: http://regexlib.com.

 Is this data a candidate for a SQL Injection or Cross Site Scripting attack? Build server side defenses to neutralize
the attack. See Input Security User’s Guide for details.

 Always set up server side validation. Test Page.IsValid in your postback event handler methods. Only use the data
if it is true.

5. Get and set the value using the Text property.

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid (DES
validation framework) or Page.IsValid (native validation framework) is true.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.regularexpressionvalidator(VS.80).aspx�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:RegExp�
http://regexlib.com/�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 119 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

6. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

 See also “Additional Topics for Using These Controls”.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 120 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Properties of the FilteredTextBox
Most of the properties are inherited from PeterBlum.DES.TextBox (see “Properties for the Enhanced TextBox”) and
the ASP.NET TextBox (see “System.Web.UI.WebControls.TextBox Members”).

Click on any of these topics to jump to them:

 Get and Set The Value Properties

 Character Set Rules Properties

The following topics are inherited from DES’s TextBox control:

 Editing Properties

 Behavior Properties

 Appearance Properties

 AutoPostBack Properties

 Value When Blank Properties

 ToolTip Properties

 Hint Properties

 Tab Rules Properties

 Client-Side Functions Properties

Get and Set The Value Properties
The Properties Editor shows these properties in the “Data” category.

 Text (string) – Get and set the value that is edited. No validation is performed when getting or setting the value. It
defaults to "".

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid is true.

 IsValid (Boolean) – When true, the value of Text matches the character set rules. It also returns true when blank.
Recommendation: Use a CharacterValidator or RegexValidator to validate the value.

 TextChanged (event) – This event is fired on post back when the TextBox value has changed. See
System.Web.UI.WebControls.TextBox.TextChanged Event.

Note: This event only works when the ViewState is enabled on the TextBox.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolstextboxmemberstopic.asp�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox.textchanged(vs.71).aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 121 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Character Set Rules Properties
The Properties Editor shows these properties in the “Character set” category.

 LettersLowercase (Boolean) – When true, all lowercase letters are part of the character set. When false, no
lowercase letters are included unless they are specified in the OtherCharacters property. It defaults to false.

 LettersUppercase (Boolean) – When true, all uppercase letters are part of the character set. When false, no
uppercase letters are included unless they are specified in the OtherCharacters property. It defaults to false.

 DiacriticLetters (Boolean) – When true, diacritic (accented) letters are part of the characterset. There are two groups
of diacritics available to users: ASCII and Unicode. They are both supported.

When false, no diacritic letters are included unless they are specified in the OtherCharacters property. It defaults to
false.

ASCII Diacritic Letters Supported
âäàåáÄÅ çÇ éêëèÉ æÆ ƒ ïîìí ñÑ ôöòóÖ üûùúÜ ÿ

These letters are found in the ASCII character set between ASCII 128 and 165. Users on Windows type ALT+1## to
insert them into the textbox. Users on MacOSX use Edit; Special Characters to open the Character Palette. These
characters are in the Glyph View.

Unicode Diacritic Letters Supported
àáâãäåÀÁÂÃÄÅ æÆ çÇ èéêëÈÉÊË ìíîïÌÍÎÏ ñÑ òóôõöøÒÓÔÕÖØ ùúûüÙÚÛÜ ýÿÝ ðÐ Þþ ß

These letters are found in Unicode’s Latin-1 Supplement character set between 0192 (Hex 00C0) and 0255 (Hex 00FF).
Users on Windows type ALT+0### to insert them into the textbox. Users on MacOSX use Edit; Special Characters to
open the Character Palette. These characters are in the Unicode View.

 Digits (Boolean) – When true, all digits are part of the character set. When false, no digits are included unless they
are specified in the OtherCharacters property. It defaults to false.

 Space (Boolean) – When true, the Space character is part of the character set. It defaults to false. The Trim property
automatically strips leading and trailing spaces when true. It will not affect embedded spaces.

 Enter (Boolean) – When true, the Enter character is part of the character set. It defaults to false.

 Punctuation (Boolean) – When true, punctuation characters are part of the characterset. When false, no punctuation
characters are included unless they are specified in the OtherCharacters property. It defaults to false.

Punctuation Characters Supported
. , ! ? ' " - ; :

(period, comma, exclamation point, question mark, single quote, double quote, dash, semicolon, colon)

ALERT: Hackers use the single quote and dash for SQL Injection attacks. If you permit these characters, see the
DES: Peter’s Input Security User’s Guide for defensive measures.

 CurrencySymbols (Boolean) – When true, currency symbol characters are part of the characterset. When false, no
currency symbol characters are included unless they are specified in the OtherCharacters property. It defaults to
false.

Currency Symbols Supported
$ ¢ ¥ ¥ £ ¤

(US Dollar, cents – UNICODE 0162, Yen – ASCII 157, Yen – UNICODE 0164, Pounds – UNICODE 0163)

 EnclosureSymbols (Boolean) – When true, characters that enclose (bracket) text are part of the characterset. When
false, no enclosure characters are included unless they are specified in the OtherCharacters property. It defaults to
false.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 122 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Enclosure Symbols Supported
() [] { }

 MathSymbols (Boolean) – When true, math symbol characters are part of the characterset. When false, no math
symbol characters are included unless they are specified in the OtherCharacters property. It defaults to false.

Math Symbols Supported
+ - * / = () < > . % ± × ÷ ± ÷

(plus, minus, asterisk, equals, left paren, right paren, less than, greater than, period, percent, plus/minus – UNICODE
0177, multiply – UNICODE 0215, divide – UNICODE - 0247, divide – ASCII 246)

ALERT: Hackers use the dash for SQL Injection attacks. If you permit the dash, see the DES: Peter’s Input Security
User’s Guide for defensive measures.

 VariousSymbols (Boolean) – When true, various symbol characters shown below are part of the characterset. When
false, none of the characters shown below are included unless they are specified in the OtherCharacters property. It
defaults to false.

Various Symbols Supported
_ @ # ^ & * ~ ¿ ¿ ¡ \ / | ¦ § © ® ` ´

(Underscore, at, circumflex, ampersand, asterisk, tilde, inverted question mark – ASCII 168, inverted question mark –
UNICODE 0191, inverted exclamation point – UNICODE 0161, left slash, right slash, pipe, broken bar, section sign,
copyright, registered, grave accent, acute accent)

 OtherCharacters (string) – Enter each unique character that you want in the character set. Don’t enter any characters
that are already covered by the previously stated properties. Suppose you want to support only “n”, “x”, and the
underscore character here. You would enter “nx_”. Suppose you want the punctuation characters. You would enter
“.!,?;:”.

It defaults to "".

 Exclude (Boolean) – When false, the character set represents only the characters considered valid. When true, the
character set represents the invalid characters and all other characters are valid. It defaults to false.

 UseKeyboardFiltering (Boolean) – Determines if client-side filtering is on or off. While the FilteredTextBox is
assumed to be filtering and this starts as true, some applications need to programmatically determine if filtering is
used. They may prefer the Enhanced TextBox at times and when they do, use a FilteredTextBox and switch this to
false.

When false, all character set properties are ignored and every character is permitted. In addition, the CharacterValidator
assigned to the FilteredTextBox

It defaults to true.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 123 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

MultiSegmentDataEntry Control
The PeterBlum.DES.MultiSegmentDataEntry control is for strongly patterned text entry where the value has data
that the user should enter and formatting that guides the user. A U.S. phone number is a good example. It is ten digits with
separators after the first 3 and second 3 digits. For example: 123 456 6789 and (123)456-6789. Other common patterns
include IP addresses, postal codes, serial numbers, identification numbers like the U.S. social security number, bar code
numbers, and dates.

The patterns can include letters as well as digits. For example, a person’s first and last name can be entered into two fields
although stored in a single text string with a space separating the two.

The MultiSegmentDataEntry control is similar to a masked text box that you often find in Windows applications. It allows
the user to type a limited character set into specific segments while imposing specific separators. It’s intended to closely
assist the user so that they enter data in the correct pattern. The MultiSegmentDataEntry control has some advantages over
the masked text box that assist the user further, including segments with dropdownlists, textboxes with spinners, interactive
hints on individual segments, and Validators supported both on the entire field and individual segments.

Click on any of these topics to jump to them:

 Features

 Using the MultiSegmentDataEntry Control

 Getting and Setting the Value of the Control

 Validation on AutoPostBack

 Interactive Hints

 Data Entry Rules

 Changing the Appearance with Style Sheets

 Adding a MultiSegmentDataEntry Control

 Properties for the MultiSegmentDataEntry Control

 Properties for the PeterBlum.DES.TextSegment Class

 Properties for the PeterBlum.DES.IntegerTextSegment Class

 Properties for the PeterBlum.DES.DropDownListSegment Class

 Examples

 Subclassing MultiSegmentDataEntry

 MultiSegmentDataEntryValidator

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 124 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Features
Use demos here: http://www.peterblum.com/DES/DemoMultiSeg.aspx.

Use the PeterBlum.DES.MultiSegmentDataEntry control as a substitute for a TextBox when you have a strongly
patterned data type. It is a similar idea to a masked textbox, where each character position requires a specific character. For
example, this control and masked textboxes are used to enter phone numbers, IP addresses, and dates (although the Peter’s
Date And Time module provides much better date entry with its own DateTextBox.)

While the masked textbox is one TextBox control with precise keyboard filtering, the MultiSegmentDataEntry control
defines multiple TextBoxes or DropDownLists, for each “segment” of the data where the user types. Any static text, like the
period found between each segment of an IP address, is displayed between the segments and the user doesn’t have to type
them. This design has several advantages over the masked textbox:

 Browsers have a mixture of capabilities when it comes to handling typing at a particular position. To do it right, you
need to know the start and end index of the insertion point (when they are different, they user has selected some text).
Internet Explorer does not make this information available, although the Mozilla browsers do. Usually masked textboxes
for Internet Explorer can allow illegal cases as the user moves the insertion point within the existing text. The
MultiSegmentDataEntry control never has this problem. It does not need to know about the insertion point.

 Each segment’s textbox can have its own character set. For example, one can allow letters while another allows digits.

 Segments can offer a DropDownList, which is a very good user interface for having a limited set of choices, like the
months of the year.

 Individual segments know when you type a character that separates two segments, like the period between IP address
segments. They autotab to the next segment so the user can enter the text naturally, without worrying about the tab key.

 TextBoxes can have a maximum length that provides additional guidance to the user. Plus they can autotab when the
limit is hit.

 When working with integers, your textbox can offer spinners (up/down arrows) to change the value.

 Each segment can have its own Validator in addition to a master Validator for the entire text. For example, an IP address
needs a RangeValidator for values from 0 to 255 on each segment.

 Hints can be shown on the page as focus moves into a segment. So on-screen documentation is available.

All of these features help greatly improve the user’s experience so the user knows what to do and understands how to enter
patterned data without knowing the pattern in advance.

To make it work, the MultiSegmentDataEntry control has the ability to get and set single patterned string, splitting or joining
it according to rules that you specify. For example, on a phone number, the minus character is just formatting and the digits
found before and after a minus appear in different segments.

The MultiSegmentDataEntry control supports most of the existing Validators that evaluate textboxes. For example, if you set
it up for credit card numbers, you can use the CreditCardNumberValidator on it. Additionally, since each segment has rules
like text length, valid characters, and “requires text”, the MultiSegmentDataEntryValidator validates any pattern.

http://www.peterblum.com/DES/DemoMultiSeg.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 125 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Using the MultiSegmentDataEntry Control
Use demos here: http://www.peterblum.com/DES/DemoMultiSeg.aspx.

To decide if the MultiSegmentDataEntry control is suitable, you must determine if you have a single piece of data that has a
strong pattern. Typically a single piece of data is represented in one string. You will determine the number of segments and
their characteristics, including character set, presentation, and characters that users often type to separate each segment. The
MultiSegmentDataEntry control lets you assign the entire string and it will split it into individual segments. On post back,
you can retrieve a single string, completely formatted in the way you prefer to store it.

You could also use data types like decimal values (two segments with a decimal character separator) and dates (three
segments with a date separator). In this case, you would convert the value associated with an individual segment into text and
assign it to the segment. For example, convert the DateTime.Month value to a string and assign it to the “month” segment.
On post back, you retrieve the text from each segment and convert it back to your data type.

Initially the MultiSegmentDataEntry control has no segments defined. You create segment objects and add them to the
Segments property, which is a collection. There are three segment classes defined (you can create your own classes too):

 PeterBlum.DES.TextSegment – Supplies a PeterBlum.DES.FilteredTextBox and rules for defining the
character set.

 PeterBlum.DES.IntegerTextSegment – Supplies a PeterBlum.DES.IntegerTextBox. It only supports
entry of integers but it includes two useful tools: spinners and fill the text with lead zeros (where “1” can be shown as
“001”)

 PeterBlum.DES.DropDownListSegment – Supplies a DropDownList control. Use it when you have a short list
of choices. In addition, the DropDownList can have an internal value that differs from the name it shows. That value is
the actual data. For example, if you make a DropDownList of month names, the values can be the month numbers.

You can use any number of segments and mixture of these classes.

Click on any of these topics to jump to them:

 Defining Segments

 Segment Validation Rules

 Splitting and Joining Rules

 Formatting The Segment

 Getting and Setting the Value of the Control

 Data Entry Validation

 Validation on AutoPostBack

 Interactive Hints

 Data Entry Rules

 Changing the Appearance with Style Sheets

http://www.peterblum.com/DES/DemoMultiSeg.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 126 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Defining Segments
Each segment class defines extensive properties to assist in validation rules, how to split and join a string, what formatting
appears before and after the data entry field, separator characters, and characters for other situations.

Segment Validation Rules

Validation rules include the character set (LettersUppercase, LettersLowercase, Digits, OtherCharacters), the minimum
and maximum lengths (MinLength, MaxLength), and if an entry is required (Required). For the TextSegment, the
character set also defines keystroke filtering. These rules alone cannot report an error to the user. That’s the job of the
MultiSegmentDataEntryValidator which does its work based on these properties.

When an entry is not required, you can autofill a blank field with the value of TextWhenBlank.

Splitting and Joining Rules

When working with a string as your data, you can let the MultiSegmentDataEntry control split and join it between the
segments. Each segment defines the character sets of the editable data and separators surrounding that editable data. For
example, with a phone number of this format (###) ###-####, the first segment allows three digits. It is surrounded by
the parentheses characters.

The Validation Rules have already provided properties to define the character set and maximum size of the editable data:
LettersUppercase, LettersLowercase, Digits, OtherCharacters, and MaxLength. (IntegerTextSegment is limited to digits
and does not offer the character set properties.)

There are two sources for separators. FormattingTextBefore and FormattingTextAfter are the characters normally found
separating the segment. When rejoining the segments into one string, they are always inserted around the data from each
segment. For example, the phone number pattern (###) ###-#### uses "(" in FormattingTextBefore and ") " in
FormattingTextAfter.

IgnoreTheseCharsBefore and IgnoreTheseCharsAfter let you define characters that may appear in the original string but
do not follow the format defined on this MultiSegmentDataEntry control. They help avoid splitting errors by ignoring
unneeded but expected characters. For example, the phone number may have additional spaces and alternative separators that
you want to ignore. This example has spaces inside the parenthesis and a period separating the second and third segments
when a dash is the desired format: (###) ###.####. It would use IgnoreTheseCharsBefore = "[space]". If
FormattingTextAfter does not include a space, IgnoreTheseCharsAfter = "[space]" too.

Formatting The Segment

Use these properties to display text before and after the data entry control: DisplayTextBefore and DisplayTextAfter. They
can be any HTML you like. For example, if a space is normally separating two segments, you can use “ ”. You can
even create labels.

All segments provide these formatting properties: CssClass (for style sheets), Tooltip, Hint (uses the Hint system), and
Width.

Textbox segments all provide some properties common to PeterBlum.DES.TextBox: TextAlign, TabOnTheseKeys,
DisableAutoComplete, and DisablePaste.

IntegerTextBox segments provide some properties common to PeterBlum.DES.IntegerTextBox: ShowSpinner (and
spinner related properties), AllowNegatives, and FillLeadZeros.

DropDownList segments provide some properties common to a DropDownList control, used to set up its list: Items,
DataSource, DataMember, DataTextField, DataValueField, and DataTextFormatString.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 127 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Getting and Setting the Value of the Control
Once you have defined your segments, you can start using the MultiSegmentDataEntry control.

To get and set a string value, use the Text or TextNoSeparators properties. Both know how to split your string using the
rules you have defined on each segment. When getting the string from TextNoSeparators, it omits the separators defined in
FormattingTextBefore and FormattingTextAfter.

Use IsValid to determine if all segments match their validation rules. Use IsEmpty to determine if all segments are empty.

Data Entry Validation

Consider validation a manditory part of data entry. It prevents illegal entries from getting into your database. Also protect
yourself by setting up server side validation. Hackers often turn off javascript in their browser in hopes that your server side
code doesn’t protect against their illegal data.

Note: Normally a Validator will fire as an individual textbox is changed. When you have a group of interconnected textboxes,
its better to delay this until focus is no longer in the control. MultiSegmentDataEntry control handles this automatically.

DES Validation Framework Guidelines

See the Validation User’s Guide for details on these validators.

 Always add a validator that confirms the entry matches your data requirements.

o The MultiSegmentDataTypeValidator always matches the validation rules you already defined on each
segment. See “Segment Validation Rules”.

o Sometimes you have a pattern that is fully covered by the segment validation rules. Define a regular expression
for your pattern and use it with the RegexValidator. Here is a great site for popular patterns: http://regexlib.com.

 The MultiSegmentDataEntry control works with DES validators that evaluate text, such as RequiredTextValidator,
RegexValidator, DataTypeCheckValidator, or CreditCardNumberValidator as needed. Some of Validators need the
formatting separators, like DataTypeCheckValidator. Some do not, like CreditCardNumberValidator. Use the
ValidatorsUse property to select what the Validator will see.

 You can assign validators to individual segments. For example, establish a range with a RangeValidator or require a
pattern with the RegexValidator.

To attach a Validator to an individual segment, set its ControlIDToEvaluate property to the segment’s ID property
programmatically (example uses the 3rd segment):

[C#]

Validator.ControlIDToEvaluate = MultiSegmentDataEntry1.Segments[2].ID

[VB]

Validator.ControlIDToEvaluate = MultiSegmentDataEntry1.Segments(2).ID

Alternatively, set ControlIDToEvaluate to the ID of the MultiSegmentDataEntry control + "_" + the segment number,
starting at 1. If you want to use the 3rd segment on a control whose ID is “PhoneNumber”, ControlIDToEvaluate =
“PhoneNumber_3”.

 Is this data a candidate for a SQL Injection or Cross Site Scripting attack? Use the PageSecurityValidator or
FieldSecurityValidator. See Input Security User’s Guide for details.

Always set up server side validation. Test PeterBlum.DES.Globals.Page.IsValid in your postback event handler methods.
Only use the data if it is true.

http://regexlib.com/�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 128 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Native Validation Framework Guidelines

 Always add a validator that confirms the entry matches your data requirements.

o The MultiSegmentDataTypeValidator from PeterBlum.DES.NativeValidators.dll always matches the
validation rules you already defined on each segment. See “Segment Validation Rules”.

o Sometimes you have a pattern that is fully covered by the segment validation rules. Define a regular expression
for your pattern and use it with the RegularExpressionValidator. Here is a great site for popular patterns:
http://regexlib.com.

 The MultiSegmentDataEntry control works with native validators that evaluate text but only in server side validation. Set
the EnableClientScript property to false on each of these validators.

 You can assign validators to individual segments. For example, establish a range with a RangeValidator or require a
pattern with the RegularExpressionValidator. In this case, client-side validation is supported.

To attach a Validator to an individual segment, set its ControlIDToEvaluate property to the segment’s ID property
programmatically (example uses the 3rd segment):

[C#]

Validator.ControlIDToEvaluate = MultiSegmentDataEntry1.Segments[2].ID

[VB]

Validator.ControlIDToEvaluate = MultiSegmentDataEntry1.Segments(2).ID

Alternatively, set ControlIDToEvaluate to the ID of the MultiSegmentDataEntry control + "_" + the segment number,
starting at 1. If you want to use the 3rd segment on a control whose ID is “PhoneNumber”, ControlIDToEvaluate =
“PhoneNumber_3”.

 Is this data a candidate for a SQL Injection or Cross Site Scripting attack? Build server side defenses to neutralize the
attack. See Input Security User’s Guide for details.

Always set up server side validation. Test Page.IsValid in your postback event handler methods. Only use the data if it is
true.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.regularexpressionvalidator(VS.80).aspx�
http://regexlib.com/�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 129 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Validation on AutoPostBack
If you use AutoPostBack, it now automatically validates before posting back except when AutoPostBackValidates is
false. This avoids posting back when there is a validation error.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 130 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Interactive Hints
Note: Requires a license for the Peter’s Interactive Pages module.

You can show a hint on the page as the user tabs into the textbox. A hint is similar to a tooltip. However, a tooltip only
appears if the mouse is over the control. That is not the best way to communicate to the user as they are working in a textbox.

See the “Interactive Hints” section of the Interactive Pages User’s Guide for details.

Assign your hint text to the Hint property on each Segment. If you are using a PopupView, it optionally offers a Help button
which can show additional text. That additional text is assigned to the Segment’s HintHelp property.

The format of hints is determined by a PeterBlum.DES.HintFormatter object. You can either define one specific to
this control in the LocalHintFormatter property or specify the name of one shared by other controls in the
SharedHintFormatterName property. The HintFormatter determines where the hint is shown:

 PopupView or Label control. A PopupView is similar to a ToolTip, created with HTML
and Javascript to float near the control. It can be dragged and closed. It can be
customized with style sheets, images, and settings using the Global Settings Editor.

 In a tooltip

 In the browser’s status bar

Most of the work is done by creating a HintFormatter object. The PeterBlum.DES.HintFormatter class describes
how the hint text will be displayed. It provides its name, display mode - on the page or in a PopupView, if it’s also in the
tooltip and/or status bar, and more.

The HintManager object provides many page level properties that support this feature. (HintManager is a property of
PeterBlum.DES.Globals.Page and the PageManager control.) See the “Interactive Hints” section of the Interactive Pages
User’s Guide for details.

Setting Up Hints with PopupViews

1. Review the available PopupView definitions. PopupView definitions are created and edited within the “PopupView
definitions for Hints” section of the Global Settings Editor. Each has a name, style sheets, images, width, and other
behaviors.

2. When using PopupViews, you generally predefine a few HintFormatters that reflect the look and size you need for this
page. They are defined in the HintManager.SharedHintFormatters property. See the “Interactive Hints” section of the
Interactive Pages User’s Guide for details. If you prefer a control-specific HintFormatter, use the
LocalHintFormatter property on the TextBox control.

3. Set the SharedHintFormatterName property. When using HintManager.SharedHintFormatters, it should be the
name of the HintFormatter object, the name of a hint PopupView defined in the Global Settings Editor, or
“{DEFAULT}” to use your global default. Otherwise it should be "".

4. Each HintFormatter object should have its DisplayMode property set to Popup and PopupViewName property set to
the desired PopupView name. When SharedHintFormatterName contains the name of a hint PopupView definition, DES
creates a HintFormatter for you with DisplayMode and PopupViewName correctly set.

5. If you also want to show validation error messages (from the DES Validation Framework) in the PopupView, use the
HintManager.HintsShowErrors property. See the “Interactive Hints” section of the Interactive Pages User’s
Guide for details.

6. Set the text of the hint in the Hint property on each Segment. It can contain HTML tags if desired. If you are using the
same text in the ToolTip property, you do not need to assign anything to Hint. It uses the ToolTip property when Hint
is "".

7. If you are using the HintFormatter.HelpBehavior property, set the Segment’s HintHelp property to the appropriate
text, whether it is a more detailed description, a title, a URL, or a script.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 131 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Setting Up Hints in a Label or Panel

1. Determine what kind of appearance that you want for your hint. It can be simply a Label or a Panel whose formatting
encloses a Label and is fully hidden when there is no hint text to show. See the previous topic.

2. Determine the locations for hints. You can have one on the page, one for each group of controls, or even one for each
control. When you put one next to a control, it can be located where Validators appear as there is a feature to prevent the
hint from showing when a Validator is shown.

3. Add the controls for hints to the page. Remember that they will be hidden until focus is set to them.

4. If you are using a Panel that contains a Label, make sure the Label’s ID is Panel.ID + "_Text".

5. Determine whether you need the HintFormatter object for this control or one can be shared amongst several controls.
When using one specific to this control set up the HintFormatter object using the LocalHintFormatter property.

6. Otherwise, create the HintFormatter object in the HintManager.SharedHintFormatters property.

7. Set the SharedHintFormatterName property. When using HintManager.SharedHintFormatters, it should be the
name of the HintFormatter object or “{DEFAULT}” to use your global default. Otherwise it should be "".

8. Assign the Panel or Label control to the property HintFormatter.HintControlID.

9. Set the HintFormatter.DisplayMode to Static or Dynamic. Static will preserve the space of the Panel or Label
when it is hidden. Dynamic will not use any space when hidden.

10. If the Panel or Label appears at the same location as some Validators for this textbox, set
HintFormatter.HiddenOnError to true.

11. If you also want the hint text to appear in the status bar, set HintFormatter.InStatusBar to true.

12. Set the text of the hint in the Hint property on each segment. It can contain HTML tags if desired. If you are using the
same text in the ToolTip property, you do not need to assign anything to Hint. It uses the ToolTip property when Hint
is "".

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 132 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Data Entry Rules
As the user types, the focus jumps from segment to segment based on these properties: TabAtMaxLength,
TabOnEnterKey, TabByArrowKeys, and TabOnBackspace.

You can make the ENTER key click a button by setting the button’s control ID in the EnterSubmitsControlID property.

Note: EnterSubmitsControlID requires a license for the Peter’s Interactive Pages.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 133 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Changing the Appearance with Style Sheets
Initially, this control has the appearance of series of separate data entry controls. Use style sheets to give it a different
appearance. Here are two versions of the same control, setup to be a phone number. The second has style sheets applied:

DES supplies style sheets to make this easy. They can quickly be applied using the Auto Format command in the
SmartTag (). Just be aware that it immediately updates the CssClass properties on the control and its segments as you
make choices.

To establish the outer frame, create a style sheet class and assign its name to the CssClass property. DES supplies this class
for you in its DES\Appearance\TextBoxes\TextBoxes.css file:

.DESTBMultiSegContainer
{
 border-left: #d3d3d3 thin inset; /* lightgrey */
 border-top: #d3d3d3 thin inset;
 border-right: #d3d3d3 thin inset;
 border-bottom: #d3d3d3 thin inset;
 padding-left: 2px;
 padding-top: 2px;
 padding-right: 2px;
 padding-bottom: 2px;
}
It is used in the second graphic above.

To change the frames of textboxes, create a style sheet class with light borders or borders that match your background and
assign it to each segment’s CssClass property. DES supplies this class for you in its
DES\Appearance\TextBoxes\TextBoxes.css file:

.DESTBMultiSegTextBox
{
 border-left: #f5f5f5 thin solid; /* whitesmoke */
 border-top: #f5f5f5 thin solid;
 border-right: #f5f5f5 thin solid;
 border-bottom: #f5f5f5 thin solid;
}

It is used in the second graphic above.

To change the appearance of DropDownLists, create a style sheet class and assign it to each DropDownListSegment’s
CssClass property. DES supplies this class for you in its DES\Appearance\TextBoxes\TextBoxes.css file:

.DESTBMultiSegDropDownList
{
}

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 134 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Adding a MultiSegmentDataEntry Control
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Add a MultiSegmentDataEntry control to the page.

Visual Studio and Visual Web Developer Design Mode Users

Drag the MultiSegmentDataEntry control from the Toolbox onto your web form.

Text Entry Users

 Add the control (inside the <form> area)::

<des:MultiSegmentDataEntry id="[YourControlID]" runat="server" />

Programmatically creating the MultiSegmentDataEntry control

 Identify the control which you will add the MultiSegmentDataEntry control to its Controls collection. Like all
ASP.NET controls, the MultiSegmentDataEntry can be added to any control that supports child controls, like Panel,
User Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location
and use the PlaceHolder.

 Create an instance of the MultiSegmentDataEntry control class. The constructor takes no parameters.

 Assign the ID property.

 Add the MultiSegmentDataEntry control to the Controls collection.

In this example, the MultiSegmentDataEntry is created with an ID of “MultiSegmentDataEntry1”. It is added to
PlaceHolder1.

[C#]

PeterBlum.DES.MultiSegmentDataEntry vMSDE =
 new PeterBlum.DES.MultiSegmentDataEntry();
vMSDE.ID = "MultiSegmentDataEntry1";
PlaceHolder1.Controls.Add(vMSDE);

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add a using clause to that namespace on your
form.

 [VB]

Dim vMSDE As PeterBlum.DES.MultiSegmentDataEntry = _
 New PeterBlum.DES.MultiSegmentDataEntry()
vMSDE.ID = "MultiSegmentDataEntry1"
PlaceHolder1.Controls.Add(vMSDE)

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add an Imports clause to that namespace on
your form.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 135 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

3. Add segment objects to the Segments property. See “Defining Segments” and “Examples”.

Visual Studio and Visual Web Developer Design Mode Users

The Segments property offers this editor.

When you click the Add button, a list of segment types appears. Select from TextSegment, IntegerTextSegment, and
DropDownListSegment. A new segment will be added. Edit the properties in the right panel.

Text Entry Users

Segments are a type of collection. Therefore its ASP.NET text is nested as a series of child controls within the
<Segments> tag. Each segment is a tag with <des:segmentclass> followed by the properties. For TextSegment,
use <des:TextSegment>; for IntegerTextSegment, use <des:IntegerTextSegment>; for
DropDownListSegment, use <des:DropDownListSegment>.

The following example represents the same conditions shown in the editor window above.

<des:MultiSegmentDataEntry id="PhoneNumber" runat="server">

 <Segments>
 <des:TextSegment CssClass="DESMultiSegTextBox"
 MinLength="3" TextAlign="Center" Width="30px" />
 <des:IntegerTextSegment CssClass="DESMultiSegTextBox"
 FormattingTextAfter="-" TabOnTheseKeys="- " />
 </Segments>

</des:MultiSegmentDataEntry>

Programmatically creating the segment objects

 Create an instance of one of these classes: PeterBlum.DES.TextSegment,
PeterBlum.DES.IntegerTextSegment, or PeterBlum.DES.DropDownListSegment. The
constructor takes no parameters.

 Assign property values.

 Add the object to the Segments collection using its Add() method.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 136 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

[C#]

PeterBlum.DES.TextSegment vSeg1 = new PeterBlum.DES.TexSegment();
vSeg1.Width = "30px";
vSeg1.MinLength = 3;
vSeg1.TextAlign = PeterBlum.DES.TextAlign;
vSeg1.CssClass = "DESMultiSegTextBox";
PhoneNumber.Segments.Add(vSeg1);

[VB]

Dim vSeg1 As PeterBlum.DES.TextSegment = New PeterBlum.DES.TexSegment()
vSeg1.Width = "30px"
vSeg1.MinLength = 3
vSeg1.TextAlign = PeterBlum.DES.TextAlign
vSeg1.CssClass = "DESMultiSegTextBox"
PhoneNumber.Segments.Add(vSeg1)

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

4. Set the properties associated with the MultiSegmentDataEntry . See “Properties for the MultiSegmentDataEntry
Control”.

5. Assign the MultiSegmentDataEntryValidator and other Validators to the MultiSegmentDataEntry control. See “Data
Entry Validation”.

6. Get and set the value using the Text property. If you need to assign values directly to individual segments, convert your
value into a string and assign it to the Text property on each segment. In this example, an integer in monthnum is set on
the first segment:

[C#]

StartDate.Segments[0].Text = monthnum.ToString();

[VB]

StartDate.Segments(0).Text = monthnum.ToString()

Usually you will set the initial value in the Page_Load() method when Page.IsPostBack is false. You will get the
submitted value in your post back event method, after checking that PeterBlum.DES.Globals.Page.IsValid (DES
validation framework) or Page.IsValid (native validation framework) is true.

7. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

 See also “Additional Topics for Using These Controls”.

Use demos here: http://www.peterblum.com/DES/DemoMultiSeg.aspx.

http://www.peterblum.com/DES/DemoMultiSeg.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 137 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Properties for the MultiSegmentDataEntry Control
The PeterBlum.DES.MultiSegmentDataEntry control is subclassed from
System.Web.UI.WebControls.WebControl. It inherits properties common to all webcontrols.

Click on any of these topics to jump to them:

 Getting and Setting Values Properties

 Segments Property

 Properties for the PeterBlum.DES.TextSegment Class

 Properties for the PeterBlum.DES.IntegerTextSegment Class

 Properties for the PeterBlum.DES.DropDownListSegment Class

 Behavior Properties

 Tab Rules Properties

 Appearance Properties

 Hint Properties

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolswebcontrolclasstopic.asp�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 138 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Getting and Setting Values Properties
None of these properties are shown in the Properties Editor. They must be used programmatically or with databinding.

 Text (string) - Gets and sets the text that is used by the segments.

When getting, it joins the text from each segment to build your string. It retrieves the data from each segment enclosed in
the text from the FormattingTextBefore and FormattingTextAfter properties. If the segment’s data is blank, the value
of the TextWhenBlank property is used.

When setting, it splits your string using rules on each segment. This is one of the most complex features of this control.
Text that closely matches the strong pattern with the correct number of characters in each segment and the same
separators identified by FormattingTextBefore and FormattingTextAfter will always work.

The splitting function basically parses the text from left to right, adding each character permitted by the current character
until:

o It hits one that is not in the segment’s character set for the editable data.

o Defined as separator (in FormattingTextAfter, IgnoreTheseCharactersAfter or in the next segments
FormattingTextBefore and IgnoreTheseCharactersBefore properties).

o Reaches the MaxLength. This allows a string consisting only of digits to be split at specific places. For
example, a social security number has segments of 3, 2, and 4 digits. If you pass “123456789”, it will split it
like “123” “45” “6789”.

Splitting Badly Formatted Data

If your database has some existing data that does not match the desired format, see if the IgnoreTheseCharactersBefore
and IgnoreTheseCharactersAfter properties will help. Otherwise, expect that the data will split in unusual ways.

Suppose that you have a US Phone number pattern, which expects this pattern: (###) ###-####. Here are some
values and how to make them work:

555 222-1234 – Works when a space character is defined in the first segment’s FormattingTextAfter, the second
segment’s FormattingTextBefore, the first segment’s IgnoreTheseCharactersAfter or the second segment’s
IgnoreTheseCharactersBefore.

555222-1234 – Works when the first segment’s MaxLength is set to 3.

555-222-1234 – Works when the first segment’s IgnoreTheseCharactersAfter contains a minus character.

555-222123 – If the second segment has established a MaxLength, it will split after “222” leaving the 3rd segment with
“123”.

(555) 2 22-1234 – With the space inside what would normally be the second segment, expect a bad format where “2” is
in the second segment, “22” is in the third, and “1234” to be omitted. If you have set up good Validators and the user
submits this page, they will be required to fix the phone number.

 TextNoSeparators (string) – Gets and sets the text used in segments. When setting, it works identically to the Text
property. When getting, it never adds the FormattingTextBefore and FormattingTextAfter properties on segments
although it will use TextWhenBlank if needed.

Suppose you are getting a phone number whose formatted pattern is (###) ###-####. The Text property returns
(555) 222-1234 while TextNoSeparators returns 5552221234.

 ValidatorText (string) – Gets the text used by Validators attached to this control. It will use the ValidatorsUse property
to select between the Text and TextNoSeparators property. You probably will not use it.

 IsValid (Boolean) – Determines if all of the segments have data that matches their validation rules. When true, they
match their rules. When false, the do not. Usually you will use the MultiSegmentDataEntryValidator instead of this
property to determine validity.

 IsEmpty (Boolean) – Determines if all segments have no data. When true, they are all empty. When false, at least
one has text. You can use a RequiredTextValidator to prevent an empty control.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 139 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 TextChanged (event) – This event is fired on post back when the control’s value has changed. It is the same method
definition as you use with a TextBox. See System.Web.UI.WebControls.TextBox.TextChanged Event.

This event only works when the ViewState is enabled on the MultiSegmentDataEntry control.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolstextboxclasstextchangedtopic.asp�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 140 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Segments Property
The Properties Editor shows these properties in the “Data” category.

 Segments (PeterBlum.DES.SegmentList) – A collection of segment objects. Add any of the segment classes to it:
PeterBlum.DES.TextSegment, PeterBlum.DES.IntegerTextSegment, and
PeterBlum.DES.DropDownListSegment. See “Defining Segments” for an overview and “Examples”.

Each segment provides extensive formatting properties for the text before, after, and the data entry control itself.

o See “Properties for the PeterBlum.DES.TextSegment Class”

o See “Properties for the PeterBlum.DES.IntegerTextSegment Class”

o See “Properties for the PeterBlum.DES.DropDownListSegment Class”

You must have one visible segment for this control to be shown. Segments are shown in the order of this collection.

Visual Studio and Visual Web Developer Design Mode Users

The Segments property offers this editor.

When you click the Add button, a list of segment types appears. Select from TextSegment, IntegerTextSegment, and
DropDownListSegment. A new segment will be added. Edit the properties in the right panel.

Text Entry Users

Segments are a type of collection. Therefore its ASP.NET text is nested as a series of child controls within the
<Segments> tag. Each segment is a tag with <des:segmentclass> followed by the properties. For TextSegment,
use <des:TextSegment>; for IntegerTextSegment, use <des:IntegerTextSegment>; for
DropDownListSegment, use <des:DropDownListSegment>.

The following example represents the same conditions shown in the editor window above.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 141 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

<des:MultiSegmentDataEntry id="PhoneNumber" runat="server">

 <Segments>
 <des:TextSegment CssClass="DESMultiSegTextBox"
 MinLength="3" TextAlign="Center" Width="30px" />
 <des:IntegerTextSegment CssClass="DESMultiSegTextBox"
 FormattingTextAfter="-" TabOnTheseKeys="- " />
 </Segments>

</des:MultiSegmentDataEntry>

See also “Examples”.

Programmatically creating the segment objects

 Create an instance of one of these classes: PeterBlum.DES.TextSegment,
PeterBlum.DES.IntegerTextSegment, or PeterBlum.DES.DropDownListSegment. The
constructor takes no parameters.

 Assign property values.

 Add the object to the Segments collection using its Add() method.

[C#]

PeterBlum.DES.TextSegment vSeg1 = new PeterBlum.DES.TexSegment();
vSeg1.Width = "30px";
vSeg1.MinLength = 3;
vSeg1.TextAlign = PeterBlum.DES.TextAlign;
vSeg1.CssClass = "DESMultiSegTextBox";
PhoneNumber.Segments.Add(vSeg1);

[VB]

Dim vSeg1 As PeterBlum.DES.TextSegment = New PeterBlum.DES.TexSegment()
vSeg1.Width = "30px"
vSeg1.MinLength = 3
vSeg1.TextAlign = PeterBlum.DES.TextAlign
vSeg1.CssClass = "DESMultiSegTextBox"
PhoneNumber.Segments.Add(vSeg1)

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 142 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Behavior Properties
 InAJAXUpdate (Boolean) – When using AJAX on this page, set this to true if the control is involved in an AJAX

update. See “Using These Controls with AJAX” in the General Features Guide. It defaults to false.

 Visible (Boolean) – When false, no HTML is output. This control is entirely unused. When true, the control
generates HTML. It defaults to true.

 Enabled (Boolean) – When false, the segments appear disabled and do not accept modifications. When true, they
are editable. It defaults to true.

 AutoPostBack (Boolean) – When true, a change on the client-side will immediately submit the page. A change is only
detected when focus is no longer in any of the segment’s data entry controls. Usually you use this with the TextChanged
event to update some part of the page and redraw it with that change. It defaults to false.

Note: When using Microsoft ASP.NET AJAX or Telerik RadAjax on the page and this control has InAJAXUpdate set
to true, this property will use that AJAX framework to make a callback instead of a postback.

 AutoPostBackValidates (Boolean) – When true and AutoPostBack are true, before submitting, it validates the
control. If there are any errors, it does not submit. This avoids post back when the field has errors. When false, auto
post back never validates. It defaults to true.

 ValidatorsUse (enum PeterBlum.DES.ValidatorsUse) - Determines the format of text used by Validators that access this
control (except the MultiSegmentDataEntryValidator). For example, the EmailAddressValidator wants formatting like
"@" between segments while CreditCardNumberValidator cannot use separator characters.

The enumerated type PeterBlum.DES.ValidatorsUse has these values:

o Text - Use the Text property as a source. It includes separators. This is the default.

o TextNoSeparators - Use the TextNoSeparators property as a source.

 EnterSubmitsControlID (string) – Use this when you want the ENTER key to click a specific button. The browser
already has rules for clicking a button when you type ENTER. That button usually has a special frame to identify it to the
user. This will override that button.

Suppose that you have two groups of fields, each with its own submit button. Each control should use this to point to its
own submit button.

Assign the ID of the submit control. It must be assigned to a control in the same or a parent naming container. If the
control is in another naming container, use EnterSubmitsControl.

This feature fires the click() method on the client-side control. click() automatically runs the control’s client-side
onclick event. In the case of a submit control, it submits the page after firing client-side validation. There are a lot of
controls that support click(), although they vary by browser. In addition to Buttons and ImageButtons, typical cases
are hyperlinks, LinkButtons, checkboxes and radiobuttons. However, browsers don’t all support the click() method
on the same control. Here are the differences:

o Internet Explorer and Opera 7 support it on hyperlinks (and LinkButton) while Mozilla and Safari do not.

o All support checkboxes and radiobuttons. However, Mozilla always removes the focus from the current field
even if you don’t set this feature up to move the focus (the focus is gone, not moved)

o All support Buttons the same way. This is the best choice for a control to click.

It defaults to "".

License Note: This property requires a license for the Peter’s Interactive Pages.

 EnterSubmitsControl (System.Web.UI.Control) – This is an alternative to EnablerSubmitsControlID. It has the same
features as EnablerSubmitsControlID. It is assigned a reference to a control instead of an ID. As a result, it supports
controls in any naming container. It must be assigned programmatically.

When programmatically assigning properties to a TextBox control, if you have access to the submit control object, it is
better to assign it here than assign its ID to the EnablerSubmitsControlID property because DES operates faster using
EnablerSubmitsControl.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 143 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

License Note: This property requires a license for the Peter’s Interactive Pages.

 ChangeMonitorGroups (string) – When using the Change Monitor, the group names defined here are marked changed
when this control is edited. See “Change Monitor” in the Interactive Pages User’s Guide.

The value of "" is a valid group name.

For a list of group names, use the pipe character as a delimiter. For example: “GroupName1|GroupName2”. If one of the
groups has the name "", start this string with the pipe character: “|GroupName2”.

Use “*” to indicate all groups apply.

It defaults to "".

 OnChangeScript (string) - Client-side JavaScript code that will be invoked when the control is found to have changed.
With many individual data entry controls, use this to detect when the user has left the entire control after a change was
made.

You must provide valid JavaScript that ends in either a semicolon or closing bracket. It cannot contain a function
definition.

Recommendation: Create a function elsewhere on the page and call it within this string. For example:
"MyFunction(parm1);".

If AutoPostBack is true, it will append its own code to yours. In that case, your code should not be written in a way
that will skip code that follows, such as by using a return statement unless it does so to prevent the call to
__doPostBack() from occurring.

When "", it is not used.

It defaults to "".

 ViewStateMgr (PeterBlum.DES.ViewStateMgr) – Enhances the ViewState on this control to provide more optimal
storage and other benefits. Normally, the properties of this control and its segments are not preserved in the ViewState.
Just call ViewStateMgr.TrackProperty("propertyname") to save the property. Individual segments have a
similar method: TrackPropertyInViewState("propertyname").

For more details on the PeterBlum.DES.ViewStateMgr class, see “The ViewState and Preserving Properties for
PostBack” in the Validation User’s Guide.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 144 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Tab Rules Properties
The Properties Editor shows these properties in the “Tab Rules” category.

 TabAtMaxLength (Boolean) – When true, entry into textboxes will automatically tab to the next segment when the
segment reaches MaxLength. The last segment will not auto-tab. It defaults to true.

 TabOnEnterKey (Boolean) – When true, textbox segments will automatically tab to the next segment when ENTER
it typed. The last segment will not auto-tab. It defaults to false.

Note: EnterSubmitsControlID overrides this property.

 TabByArrowKeys (Boolean) – Determines if the arrow keys move focus to the next and previous segments when the
cursor reaches the text limit.

Focus will move to the next segment when the user types a right arrow at the end of the current text.

Focus will move to the previous segment when the user types a left arrow at the start of the current text.

It defaults to true.

 TabOnBackspace (Boolean) – Determines if focus will move to the previous segment when the user types a backspace
into an empty textbox.

It defaults to false.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 145 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Appearance Properties
The Properties Editor shows these properties in the “Appearance” category.

 CssClass (string) – Establish a style for the container of this control. The container is either a or <div> tag
depending on EnclosedBy. A typical style will establish borders. The DESStyleSheet.css file supplies the
“DESMultiSegContainer” property for this task. See “Changing the Appearance with Style Sheets”.

 Width (System.Web.UI.WebControls.Unit) – If you set EnclosedBy to use a <div> tag, consider establishing a width.
By default, there is no width.

 BackColor, BorderColor, BorderStyle, BorderWidth, Columns, Font, ForeColor, Height, and Style – These
properties are described in System.Web.UI.WebControls.WebControl Members.

Recommendation: use the CssClass property to establish a style sheet instead of these properties.

 EnclosedBy (enum PeterBlum.DES.MSDEEnclosedBy) – Determines if this control is enclosed by a or
<div> tag. The enumerated type PeterBlum.DES.MSDEEnclosedBy has these values:

o SPAN - Use a tag. It allows the control to appear "inline". This is the default.

o DIV - Use a <div> tag. When you embed block-type HTML tags into the segment's DisplayBeforeText and
DisplayAfterText, some browsers do not permit them in a tag. Block-type HTML tags include but are
not limited to <div>, <table>, <tr>, and <td>.

When using the <div> enclosure, consider setting the Width attribute. Otherwise, it probably will be too wide.

 TabIndex (short) – Determine the tab index of the control on the page. The TabIndex is applied to the first segment.
Each segment that follows adds one to the TabIndex. So if you have 4 segments, it will use 4 sequential values, from
TabIndex to TabIndex + 3.

 ToolTip (string) – When assigned, a tooltip with this text is shown when the user points to the control. It can be
overridden on individual segments which have their own ToolTip. If you are using the Hint feature, it can be used as the
hint when the Hint property is "". When using the “Enhanced ToolTips” feature, the browser’s tooltip will be replaced
by a PopupView. See the Interactive Pages User’s Guide.

 ToolTipLookupID (string) – Gets the value for ToolTip through the String Lookup System. (See “String Lookup
System” in the General Features Guide.) The LookupID and its value should be defined within the String Group of
Hints. If no match is found OR this is blank, ToolTip will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 ToolTipUsesPopupViewName (string) – When using the “Enhanced ToolTips” feature, this determines which
PopupView definition is used. For details on Enhanced ToolTips, see the Interactive Pages User’s Guide.

Specify the name from the PopupView definition or use the token “{DEFAULT}” to select the name from the global
setting DefaultToolTipPopupViewName, which is set with the Global Settings Editor.

A PopupView definition describes the name, style sheets, images, behaviors, and size of a PopupView. Use the Global
Settings Editor to create and edit these PopupView definitions in the “PopupView definitions used by the
HintManager” section.

Tooltips are only converted to PopupViews when HintManager.EnableToolTipsUsePopupViews is True.
(HintManager is accessed programmatically through PeterBlum.DES.Globals.Page and in the PageManager control.)

Here are the predefined values: LtYellow-Small, LtYellow-Medium, LtYellow-Large, ToolTip-Small,
ToolTip-Medium, and ToolTip-Large. All of these are light yellow. Their widths vary from 200px to 600px.
Those named “ToolTip” have the callout feature disabled. Those named “LtYellow” have the callout feature enabled.

It defaults to “{DEFAULT}”.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolsunitclasstopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolswebcontrolmemberstopic.asp�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 146 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Note: When the name is unknown, it also uses the factory default. This allows the software to operate even if a
PopupView definition is deleted or renamed.

Note: When the HintManager.ToolTipsAsHints feature is enabled, anything other than “” or “{DEFAULT}” assigned to
ToolTipUsesPopupViewName will prevent the ToolTip text from being assigned as a Hint. You must explicitly assign the
Hint text if you want the tooltip and hint to share the same text.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 147 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Hint Properties
License Note: This feature requires a license for the Peter’s Interactive Pages.

The Interactive Hint feature lets you show text on-screen that describes the segment currently with focus. See “Interactive
Hints” to learn how to set up the Hint feature.

The actual text of a hint is assigned on individual segments, using their Hint and HintHelp properties. The rest of the
properties, shown below, are on the MultiSegmentDataEntry control.

The Properties Editor shows these properties in the “Hint” category.

 SharedHintFormatterName (string) – Specify the name of the desired HintFormatter object found in
HintManager.SharedHintFormatters. (HintManager is accessed programmatically through
PeterBlum.DES.Globals.Page and in the PageManager control.) Alternatively, specify the name of a PopupView
defined in the “PopupView definitions used by HintFormatters” of the Global Settings Editor.

The PeterBlum.DES.HintFormatter class describes how the hint text will be displayed. It provides its name,
display mode - on the page or in a PopupView, if it’s also in the tooltip and/or status bar, and more.

The HintManager.SharedHintFormatters property defines various ways to display a hint with
PeterBlum.DES.HintFormatter objects. It lets you share a HintFormatter definition amongst controls on this
page. It not only makes changes to the HintFormatter quick, but it also reduces the JavaScript output. If you want to
create a HintFormatter specific to this control, set SharedHintFormatterName to "" and edit the properties of
LocalHintFormatter (see below).

If you specify the name of a PopupView and there is a definition with that name, a HintFormatter is automatically added
to HintManager.SharedHintFormatters with its name matching the name of the PopupView. This is an easy way to
work with PopupViews without the extra step of setting up HintFormatters. The HintFormatter defined will also show
the hint as a tooltip but it will not show the hint in the status bar. If you need more control over the HintFormatter’s
properties, you must create the HintFormatter yourself.

See the “Interactive Hints” section of the Interactive Pages User’s Guide for details on the
PeterBlum.DES.HintFormatter class and setting up HintManager.SharedHintFormatters.

Use the token "{DEFAULT}" to get the name from HintManager.DefaultSharedHintFormatterName.

It defaults to “{DEFAULT}”.

 LocalHintFormatter (PeterBlum.DES.HintFormatter) – When none of the HintFormatter objects defined in
HintManager.SharedHintFormatters is appropriate, use this property. (HintManager is accessed programmatically
through PeterBlum.DES.Globals.Page and in the PageManager control.)

The PeterBlum.DES.HintFormatter class describes how the hint text will be displayed. It provides its display
mode - on the page or in a PopupView, if it’s also in the tooltip and/or status bar, and more. See the “Interactive Hints”
section of the Interactive Pages User’s Guide for directions on using the PeterBlum.DES.HintFormatter
class.

You must set SharedHintFormatterName to "" for this to be used.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 148 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Properties for the PeterBlum.DES.TextSegment Class
For directions on creating a PeterBlum.DES.TextSegment object, see step 0 in “Adding a MultiSegmentDataEntry
Control”.

By default, no properties are saved in the control’s ViewState. If you set them programmatically, you must do it every time.
Also you can save an individual property in the ViewState by calling the
TrackPropertyInViewState("propertyname") method on the Segment object.

Click on any of these topics to jump to them:

 Get and Set Text Properties

 Split and Join Text Properties

 Data Entry and Validation Rule Properties

 Appearance Properties

 Behavior Properties

 Hint Properties

Get and Set Text Properties
These three properties interact directly with the TextBox’s text value. Usually you will assign a string to the
MultiSegmentDataEntry.Text and TextNoSeparator properties and they will split and join the string amongst the
segments. See the next topic. Use these when you are working with something other than a string whose elements you
convert to text and are associated with individual segments.

 Text (string) – Gets and sets the value assigned to the TextBox. It does not validate or parse the text. If you want the
MultiSegmentDataEntry control to parse a string, assign your string to MultiSegmentDataEntry.Text or
MultiSegmentDataEntry.TextNoSeparator.

Use this when MultiSegmentDataEntry does not handle your data format. For example, when editing a date, you may
start with a System.DateTime structure, not a string. So convert each element – day, month, and year – to a string,
then assign it here.

 IsValid (Boolean) – Returns true when the TextBox matches the segment’s validation rules, like Required, the
character set, and text length. Returns false, when it fails to match the validation rules. Usually you will attach a
MultiSegmentDataEntryValidator to the MultiSegmentDataEntry control to validate it.

 IsEmpty (Boolean) – Returns true when the TextBox is blank. Returns false when it has text. When the TextBox
contains a value matching TextWhenBlank, it is not considered empty.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 149 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Split and Join Text Properties
These properties support the MultiSegmentDataEntry.Text and TextNoSeparator properties as they split and join one
string amongst the segments.

 MaxLength (integer) – The maximum number of characters required in this segment. A maximum is always required. It
provides a limit for splitting the text when you set the MultiSegmentDataEntry.Text property.

This value will be assigned to the TextBox's MaxLength property imposing a client-side limit as the user types.

It defaults to 4.

Note: There is a MinLength property too. It is not used to split and join but it is used for validation. See the text
topic.

 FormattingTextBefore (string) – Text that appears before the value that goes into the TextBox. It is used to split and
join the string you supply in the MultiSegmentDataEntry.Text property.

When splitting text, if this string is found, it is skipped so the text after it will be assigned to the TextBox.

When joining text, FormattingTextBefore precedes the value from the TextBox.

If DisplayTextBefore and DisplayTextAfter are both blank, this property is shown on the page before the TextBox.

It defaults to "".

 FormattingTextAfter (string) – Text that appears after the value that goes into the TextBox. It is used to split and join
the string you supply in the MultiSegmentDataEntry.Text property.

When splitting text, if this string is found, it is skipped so the text after it will be assigned to the next segment.

When joining text, FormattingTextAfter follows the value from the TextBox.

If DisplayTextBefore and DisplayTextAfter are both blank, this property is shown on the page after the TextBox.

It defaults to "".

 IgnoreTheseCharsBefore (Boolean) – When setting the MultiSegmentDataEntry.Text property, the control splits
your string amongst each segment. Each character in IgnoreTheseCharsBefore will be ignored if found preceding the
value that is assigned to the TextBox. It helps the MultiSegmentDataEntry control support badly formatted data.

When splitting, data you retrieve from your database may contain inappropriate characters, due to inconsistent data entry
rules. Perhaps another web page or application was used to collect this data and its validation rules did not stop entries
that you now consider illegal formats.

For example, you demand phone numbers to have this format: (###) ###-####. But your database contains phone
numbers with additional spaces: (###) ### - ####. The space character is inappropriate here and can cause the
MultiSegmentDataEntry control to parse incorrectly. By adding the space character to IgnoreTheseCharsBefore, it will
be skipped as the data is split. In fact, the space character is a very common entry for this property.

This property permits a list of characters. For example, if you want to ignore dash, exclamation point, and slash, just
enter "-!/".

It does a case insensitive match in case you want to include letters here.

If you enter the text "a-z" (in lowercase), it is a special symbol that means consider all letters (including Unicode) to be
ignored. Only use it when this segment and the next visible segment do not allow letters in their TextBoxes.

If you enter the text "0-9", it is a special symbol that means consider all digits to be ignored. Only use it when this
segment and the next visible segment do not allow digits in their TextBoxes.

It defaults to "".

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 150 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 IgnoreTheseCharsAfter (Boolean) – When setting the MultiSegmentDataEntry.Text property, the control splits your
string amongst each segment. Each character in IgnoreTheseCharsAfter will be ignored if found after the value that is
assigned to the TextBox. It helps the MultiSegmentDataEntry control support badly formatted data.

When splitting, data you retrieve from your database may contain inappropriate characters, due to inconsistent data entry
rules. Perhaps another web page or application was used to collect this data and its validation rules did not stop entries
that you now consider illegal formats.

For example, you demand phone numbers to have this format: (###) ###-####. But your database contains phone
numbers with additional spaces: (###) ### - ####. The space character is inappropriate here and can cause the
MultiSegmentDataEntry control to parse incorrectly. By adding the space character to IgnoreTheseCharsAfter, it will
be skipped as the data is split. In fact, the space character is a very common entry for this property.

This property permits a list of characters. For example, if you want to ignore dash, exclamation point, and slash, just
enter "-!/".

It does a case insensitive match in case you want to include letters here.

If you enter the text "a-z" (in lowercase), it is a special symbol that means consider all letters (including Unicode) to be
ignored. Only use it when this segment and the next visible segment do not allow letters in their TextBoxes.

If you enter the text "0-9", it is a special symbol that means consider all digits to be ignored. Only use it when this
segment and the next visible segment do not allow digits in their TextBoxes.

It defaults to "".

 NoTextBeforeWhenBlank (Boolean) – When getting the value from the MultiSegmentDataEntry.Text property, if
the TextBox is blank, do not add FormattingTextBefore to the result when this is true. When false, add
FormattingTextBefore.

Only set to true in these cases:

o When it is the last segment

o When Required is false and TextWhenBlank has been assigned

Otherwise there will be no text representing this segment and it will not be parsed correctly the next time.

A good example of this is the extension on a phone number. Its usually "x" + digits. When the digits are missing, also
remove the "x". When the extension is included, MultiSegmentDataEntry.Text returns (###) ###-####x####.
When the extension is omitted, MultiSegmentDataEntry.Text returns (###) ###-####.

It defaults to false.

 NoTextAfterWhenBlank (Boolean) – When getting the value from the MultiSegmentDataEntry.Text property, if the
TextBox is blank, do not add FormattingTextAfter to the result when this is true. When false, add
FormattingTextAfter.

Only set to true in these cases:

o When it is the last segment

o When Required is false and TextWhenBlank has been assigned

Otherwise there will be no text representing this segment and it will not be parsed correctly the next time.

It defaults to false.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 151 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 TextWhenBlank (string) – If the TextBox is left blank and the Required property is false, this text will be used when
rejoining.

A good example of using this property: set up the area code segment of a phone number to return " " (three spaces).
Phone numbers to be entered without an area code will be formatted like this: () ###-####.

When splitting, if this text is found (case insensitive), the TextBox is blank.

When joining, if the TextBox is blank, this text is inserted.

This is not used when Required is true.

It defaults to "".

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 152 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Data Entry and Validation Rule Properties
 LettersUppercase (Boolean) – When true, uppercase letters are permitted. When false, they are filtered out when

typed or reported as invalid by the MultiSegmentDataEntryValidator. It defaults to false.

 LettersLowercase (Boolean) – When true, lowercase letters are permitted. When false, they are filtered out when
typed or reported as invalid by the MultiSegmentDataEntryValidator. It defaults to false.

 Digits (Boolean) – When true, digit characters are permitted. When false, they are filtered out when typed or
reported as invalid by the MultiSegmentDataEntryValidator. It defaults to true.

 OtherCharacters (string) – When assigned, each character in this property is permitted in the TextBox. When false,
they are filtered out when typed or reported as invalid by the MultiSegmentDataEntryValidator.

Avoid putting the same characters in here as in TabOnTheseKeys.

It defaults to "".

 Required (Boolean) – When true, the TextBox requires text or the MultiSegmentDataEntryValidator will report an
error. When false, the textbox can be blank. In that case, you should consider using TextWhenBlank to provide some
kind of marker where the data portion of the segment goes.

It defaults to true.

 MinLength (integer) – The minimum number of characters required in this TextBox. When less than this,
MultiSegmentDataEntryValidator reports an error.

If the Required property is false and MinLength > 0, when the number of characters entered is 0, there will be no
error.

This value must be less than or equal MaxLength.

It defaults to 0.

Note: There is a MaxLength property too. It is in the previous section as it is essential in splitting the text.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 153 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Appearance Properties
 DisplayTextBefore (string) – Text that is shown before the TextBox. HTML tags are permitted. Use it to establish text

and HTML formatting that appears before the TextBox.

If DisplayTextBefore and DisplayTextAfter are both blank, FormattingTextBefore is used. Often
FormattingTextBefore lacks some HTML that provides good on-screen formatting. For example, when
FormattingTextBefore contains a left parenthesis, when shown on the page, you feel it needs to be " (".

It defaults to "".

 DisplayTextAfter (string) – Text that is shown after the TextBox. HTML tags are permitted. Use it to establish text and
HTML formatting that appears after the TextBox.

If DisplayTextBefore and DisplayTextAfter are both blank, FormattingTextAfter is used. Often
FormattingTextAfter lacks some HTML that provides good on-screen formatting. For example, when
FormattingTextAfter contains a right parenthesis, when shown on the page, you feel it needs to be ") ".

It defaults to "".

 Width (string) – The width of the TextBox. It is used when AutoWidth is false. Use values showing either pixels or
percentages.

When "", it is not used.

When set, it changes AutoWidth to false.

It defaults to "".

 AutoWidth (Boolean) – When true, set the width of the TextBox by assigning the value of the MaxLength property
to TextBox.Columns. When false, use the Width property. It defaults to true.

 CssClass (string) – Style sheet class name to apply to the TextBox. (It does not affect the text contributed by
FormattingTextBefore, DisplayTextBefore, FormattingTextAfter, or DisplayTextAfter.)

The MultiSegmentDataEntry control has numerous properties for the formatting all text and inputs. This property
overrides those settings on the segment’s TextBox.

It defaults to "".

One use is to hide the TextBox borders. The DESStyleSheet.css file supplies the style sheet class
"DESMultiSegTextBox" to establish very light borders. You can use it and edit it to match your requirements. See
“Changing the Appearance with Style Sheets”.

 TextAlign (enum PeterBlum.DES.TextAlign) – By default, text is left justified in western cultures. Often users like to
right justify numeric values in textboxes. This property offers justification. It adds the attribute style='text-
align:value;' to the <input type='text'> tag.

Some browsers do not support the text-align style and will ignore this property.

The enumerated type PeterBlum.DES.TextAlign has these values:

o Default – This is the default. When set to Default, no style=text-align attribute is written, allowing the
style sheets of the page to manage it.

o Left

o Center

o Right

o Justify

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 154 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 ToolTip (string) – The text to show in a tooltip on the TextBox. It defaults to "".

The MultiSegmentDataEntry control has its own ToolTip property. If it’s assigned and this ToolTip property is not
assigned, the segment inherits the value from the MultiSegmentDataEntry control.

When using the “Enhanced ToolTips” feature, the browser’s tooltip will be replaced by a PopupView. See the
Interactive Pages User’s Guide.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 155 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Behavior Properties
 ID (string) – Gets the ID of the TextBox control. It is always MultiSegmentDataEntry.ID + "_" + SegmentNumber.

(SegmentNumber starts at 1.) Note: This is a read-only property.

Use it to programmatically assign the ID to a Validator in the Page_Load() method. Alternatively, you can enter the
ID into the Validator’s ControlIDToEvaluate property by using the pattern MultiSegmentDataEntry.ID +
"_" + SegmentNumber.

 Visible (Boolean) – When true, the segment is visible. When false, the segment is not used except it takes up a
segment number. Segments following an invisible segment are still used.

It defaults to true.

 TabOnTheseKeys (string) – Define a list of characters that when typed, tab to the next segment. It allows the user to hit
keys that are usually the formatting between segments to jump. For example, when entering a phone number in this
format, (###) ###-####, the ")", space and "-" characters should be added here.

It accepts a list of characters. For example, to tab on the ")" and space character, enter ") ".

When a segment requires the same number of characters as in MaxLength and
MultiSegmentDataEntry.TabAtMaxLength is true, do not use this property because it will auto-tab when the
segment reaches its limit. Instead, put the characters into the next segment’s IgnoreTheseCharsBefore property.

Tabbing never occurs when the textbox is empty (in case the user hits several of these characters back-to-back that might
advance on each TextBox).

This property doesn’t apply to the last segment.

This is one of several tabbing features. The user can hit TAB, use MultiSegmentDataEntry.TabAtMaxLength and
MultiSegmentDataEntry.TabOnEnterKey.

It defaults to "".

 DisableAutoComplete (Boolean) – Several browsers provide an “autocomplete” or “autofill” feature, where a list of
previous entries appears as the user starts typing. This behavior often is inappropriate as the browser is guessing to what
the items are and its guess may be incorrect. For example, an integer textbox may still popup a list containing alphabetic
entries. These browsers offer the ability to disable autocomplete on a field-by-field basis. Set this to true to disable it
on this control. It defaults to false.

 DisablePaste (Boolean) – When you prefer that the user cannot paste anything into the TextBox, set this to true. It is
supported on Internet Explorer and any other browser that supports the 'onpaste' event. It defaults to false.

 TextBox (PeterBlum.DES.FilteredTextBox) – A reference to the FilteredTextBox Control that supports the TextBox in
this segment. Use it to programmatically modify any other properties not made directly available in the
PeterBlum.DES.TextSegment class. Usually you modify its properties in the Page_Load() and post back
event handler methods. Note: This is a read-only property.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 156 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Hint Properties
License Note: This feature requires a license for the Peter’s Interactive Pages.

The MultiSegmentDataEntry control supports the Interactive Hint feature. Most of its properties are defined on the control
itself. See “Hint Properties” on the MultiSegmentDataEntry Control Properties. The segment defines the text of the hint.

The Properties Editor shows these properties in the “Hint” category.

 Hint (string) – When using the Interactive Hints system, this is the text of the hint.

When blank, if the segment is using its ToolTip property, the ToolTip is used as the text of the hint.

HTML tags are permitted. ENTER and LINEFEED characters are not. Use the token “{NEWLINE}” where you need a
linefeed.

When the hint is shown in the browser's status bar, HTML tags will automatically be stripped.

It defaults to "".

 HintLookupID (string) – Gets the value for Hint through the String Lookup System. (See “The String Lookup System”
in the General Features Guide.) The LookupID and its value should be defined within the String Group of Hint. If no
match is found OR this is blank, Hint will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 HintHelp (string) – When the Hint uses a PopupView, this provides data for use by the Help Button and other features
on the PopupView. Its use depends on the PopupView.HelpBehavior property. (The PopupView is determined by the
HintFormatter with its PopupViewName property.)

The PopupView has an optional Help button. When setup, the user can click it to bring up additional information, such
as a new page of help text.

Here is how to use the HintHelp based on PopupView.HelpBehavior:

o None - Do not show a Help Button. The HintHelp property is not used.

o ButtonAppends - Add the text from HintHelp after the existing message. Use
PopupView.AppendHelpSeparator to separate the two parts. When clicked, the Help button disappears and
the message box is redrawn.

o ButtonReplaces - Replace the text in the message with the HintHelp. When clicked, the Help button
disappears and the message box is redrawn.

o Title - The text appears in the header as the title. It replaces the PopupView.HeaderText. There is no Help
Button. If HintHelp is blank, PopupView.HeaderText is used.

o Hyperlink - Provide a Hyperlink. The Help Info text will appear in the "{0}" token of
PopupView.HyperlinkUrlForHelpButton.

For example, the HyperlinkUrlForHelpButton property may be "{0}" and this property is the complete URL
"/helpfiles/helptopic1000.aspx".

Another example uses the token for just a querystring parameter, like this: HyperlinkUrlForHelpButton =
"/gethelp.aspx?topicid={0}" and this property contains the number of the ID.

o HyperlinkNewWindow - Provide a Hyperlink that opens a new window. The HintHelp text will appear in
the “{0}” token of PopupView.HyperlinkUrlForHelpButton.

o ButtonRunsScript - Runs the script supplied in PopupView.ScriptForHelpButton. The HintHelp text
will replace the token “{0}” in that script.

This defaults to "".

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 157 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 HintHelpLookupID (string) – Gets the value for HintHelp through the String Lookup System. (See “The String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of Hint. If no match is found OR this is blank, HintHelp will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 158 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Properties for the PeterBlum.DES.IntegerTextSegment Class
For directions on creating a PeterBlum.DES.IntegerTextSegment object, see step 0 in “Adding a
MultiSegmentDataEntry Control”.

By default, no properties are saved in the control’s ViewState. If you set them programmatically, you must do it every time.
Also you can save an individual property in the ViewState by calling the
TrackPropertyInViewState("propertyname") method on the Segment object.

Click on any of these topics to jump to them:

 Get and Set Text Properties

 Split and Join Text Properties

 Data Entry and Validation Rules Properties

 Appearance Properties

 Behavior Properties

 Spinners Properties

 Hint Properties

Get and Set Text Properties
These three properties interact directly with the TextBox’s text value. Usually you will assign a string to the
MultiSegmentDataEntry.Text and TextNoSeparator properties and they will split and join the string amongst the
segments. See the next topic. Use these when you are working with something other than a string whose elements you
convert to text and are associated with individual segments.

 Text (string) – Gets and sets the value assigned to the TextBox. It does not validate or parse the text. If you want the
MultiSegmentDataEntry control to parse a string, assign your string to MultiSegmentDataEntry.Text or
MultiSegmentDataEntry.TextNoSeparator.

Use this when MultiSegmentDataEntry does not handle your data format. For example, when editing a date, you may
start with a System.DateTime structure, not a string. So convert each element – day, month, and year – to a string,
then assign it here.

 IsValid (Boolean) – Returns true when the TextBox matches the segment’s validation rules, like Required, the
character set, and text length. Returns false, when it fails to match the validation rules. Usually you will attach a
MultiSegmentDataEntryValidator to the MultiSegmentDataEntry control to validate it.

 IsEmpty (Boolean) – Returns true when the TextBox is blank. Returns false when it has text. When the TextBox
contains a value matching TextWhenBlank, it is not considered empty.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 159 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Split and Join Text Properties
These properties support the MultiSegmentDataEntry.Text and TextNoSeparator properties as they split and join one
string amongst the segments.

 MaxLength (integer) – The maximum number of characters required in this segment. A maximum is always required. It
provides a limit for splitting the text when you set the MultiSegmentDataEntry.Text property.

This value will be assigned to the TextBox's MaxLength property imposing a client-side limit as the user types.

It defaults to 4.

Note: There is a MinLength property too. It is not used to split and join but it is used for validation. See the text
topic.

 FormattingTextBefore (string) – Text that appears before the value that goes into the TextBox. It is used to split and
join the string you supply in the MultiSegmentDataEntry.Text property.

When splitting text, if this string is found, it is skipped so the text after it will be assigned to the TextBox.

When joining text, FormattingTextBefore precedes the value from the TextBox.

If DisplayTextBefore is blank, this property is shown on the page before the TextBox.

It defaults to "".

 FormattingTextAfter (string) – Text that appears after the value that goes into the TextBox. It is used to split and join
the string you supply in the MultiSegmentDataEntry.Text property.

When splitting text, if this string is found, it is skipped so the text after it will be assigned to the next segment.

When joining text, FormattingTextAfter follows the value from the TextBox.

If DisplayTextAfter is blank, this property is shown on the page after the TextBox.

It defaults to "".

 IgnoreTheseCharsBefore (Boolean) – When setting the MultiSegmentDataEntry.Text property, the control splits
your string amongst each segment. Each character in IgnoreTheseCharsBefore will be ignored if found preceding the
value that is assigned to the TextBox. It helps the MultiSegmentDataEntry control support badly formatted data.

When splitting, data you retrieve from your database may contain inappropriate characters, due to inconsistent data entry
rules. Perhaps another web page or application was used to collect this data and its validation rules did not stop entries
that you now consider illegal formats.

For example, you demand phone numbers to have this format: (###) ###-####. But your database contains phone
numbers with additional spaces: (###) ### - ####. The space character is inappropriate here and can cause the
MultiSegmentDataEntry control to parse incorrectly. By adding the space character to IgnoreTheseCharsBefore, it will
be skipped as the data is split. In fact, the space character is a very common entry for this property.

This property permits a list of characters. For example, if you want to ignore dash, exclamation point, and slash, just
enter "-!/".

It does a case insensitive match in case you want to include letters here.

If you enter the text "a-z" (in lowercase), it is a special symbol that means consider all letters (including Unicode) to be
ignored. Only use it when this segment and the next visible segment do not allow letters in their TextBoxes.

If you enter the text "0-9", it is a special symbol that means consider all digits to be ignored. Only use it when this
segment and the next visible segment do not allow digits in their TextBoxes.

It defaults to "".

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 160 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 IgnoreTheseCharsAfter (Boolean) – When setting the MultiSegmentDataEntry.Text property, the control splits your
string amongst each segment. Each character in IgnoreTheseCharsAfter will be ignored if found after the value that is
assigned to the TextBox. It helps the MultiSegmentDataEntry control support badly formatted data.

When splitting, data you retrieve from your database may contain inappropriate characters, due to inconsistent data entry
rules. Perhaps another web page or application was used to collect this data and its validation rules did not stop entries
that you now consider illegal formats.

For example, you demand phone numbers to have this format: (###) ###-####. But your database contains phone
numbers with additional spaces: (###) ### - ####. The space character is inappropriate here and can cause the
MultiSegmentDataEntry control to parse incorrectly. By adding the space character to IgnoreTheseCharsAfter, it will
be skipped as the data is split. In fact, the space character is a very common entry for this property.

This property permits a list of characters. For example, if you want to ignore dash, exclamation point, and slash, just
enter "-!/".

It does a case insensitive match in case you want to include letters here.

If you enter the text "a-z" (in lowercase), it is a special symbol that means consider all letters (including Unicode) to be
ignored. Only use it when this segment and the next visible segment do not allow letters in their TextBoxes.

If you enter the text "0-9", it is a special symbol that means consider all digits to be ignored. Only use it when this
segment and the next visible segment do not allow digits in their TextBoxes.

It defaults to "".

 NoTextBeforeWhenBlank (Boolean) – When getting the value from the MultiSegmentDataEntry.Text property, if
the TextBox is blank, do not add FormattingTextBefore to the result when this is true. When false, add
FormattingTextBefore.

Only set to true in these cases:

o When it is the last segment

o When Required is false and TextWhenBlank has been assigned

Otherwise there will be no text representing this segment and it will not be parsed correctly the next time.

A good example of this is the extension on a phone number. Its usually "x" + digits. When the digits are missing, also
remove the "x". When the extension is included, MultiSegmentDataEntry.Text returns (###) ###-####x####.
When the extension is omitted, MultiSegmentDataEntry.Text returns (###) ###-####.

It defaults to false.

 NoTextAfterWhenBlank (Boolean) – When getting the value from the MultiSegmentDataEntry.Text property, if the
TextBox is blank, do not add FormattingTextAfter to the result when this is true. When false, add
FormattingTextAfter.

Only set to true in these cases:

o When it is the last segment

o When Required is false and TextWhenBlank has been assigned

Otherwise there will be no text representing this segment and it will not be parsed correctly the next time.

It defaults to false.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 161 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 TextWhenBlank (string) – If the TextBox is left blank and the Required property is false, this text will be used when
rejoining.

A good example of using this property: set up the area code segment of a phone number to return " " (three spaces).
Phone numbers to be entered without an area code will be formatted like this: () ###-####.

When splitting, if this text is found (case insensitive), the TextBox is blank.

When joining, if the TextBox is blank, this text is inserted.

This is not used when Required is true.

It defaults to "".

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 162 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Data Entry and Validation Rules Properties
 Required (Boolean) – When true, the TextBox requires text or the MultiSegmentDataEntryValidator will report an

error. When false, the textbox can be blank. In that case, you should consider using TextWhenBlank to provide some
kind of marker where the data portion of the segment goes.

It defaults to true.

 AllowNegatives (Boolean) – Determines if negative numbers are permitted. When true, they are permitted. It defaults
to true. When false, keyboard filtering will not allow the minus ("-") character, and the
MultiSegmentDataEntryValidator will report errors when negative values are entered. It defaults to false.

 FillLeadZeros (Integer) – Provides additional formatting when converting an integer to text by adding lead zeros. When
> 0, it adds enough lead zeroes to match the value of this property. For example, if this is 4, all values will have 4 digits.
Any number that does not offer 4 digits gets lead zeros to fill it. When the user enters “34”, this reformats to “0034”.

The lead zeros are preserved when you MultiSegmentDataEntry.Text splits and joins.

When 0, it is not used.

It defaults to 0.

 MinLength (integer) – The minimum number of characters required in this TextBox. When less than this,
MultiSegmentDataEntryValidator reports an error.

If the Required property is false and MinLength > 0, when the number of characters entered is 0, there will be no
error.

This value must be less than or equal MaxLength.

It defaults to 0.

Note: There is a MaxLength property too. It is in the previous section as it is essential in splitting the text.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 163 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Appearance Properties
 DisplayTextBefore (string) – Text that is shown before the TextBox. HTML tags are permitted. Use it to establish text

and HTML formatting that appears before the TextBox.

If blank, FormattingTextBefore is used. Often FormattingTextBefore lacks some HTML that provides good onscreen
formatting. For example, when FormattingTextBefore contains a left parenthesis, when shown on the page, you feel it
needs to be " (".

It defaults to "".

 DisplayTextAfter (string) – Text that is shown after the TextBox. HTML tags are permitted. Use it to establish text and
HTML formatting that appears after the TextBox.

If blank, FormattingTextAfter is used. Often FormattingTextAfter lacks some HTML that provides good onscreen
formatting. For example, when FormattingTextAfter contains a right parenthesis, when shown on the page, you feel it
needs to be ") ".

It defaults to "".

 Width (string) – The width of the TextBox. It is used when AutoWidth is false. Use values showing either pixels or
percentages.

When "", it is not used.

When set, it changes AutoWidth to false.

It defaults to "".

 AutoWidth (Boolean) – When true, set the width of the TextBox by assigning the value of the MaxLength property
to TextBox.Columns. When false, use the Width property. It defaults to true.

 CssClass (string) – Style sheet class name to apply to the TextBox. (It does not affect the text contributed by
FormattingTextBefore, DisplayTextBefore, FormattingTextAfter, or DisplayTextAfter.)

The MultiSegmentDataEntry control has numerous properties for the formatting all text and inputs. This property
overrides those settings on the segment’s TextBox.

It defaults to "".

One use is to hide the TextBox borders. The DESStyleSheet.css file supplies the style sheet class
"DESMultiSegTextBox" to establish very light borders. You can use it and edit it to match your requirements. See
"Changing the Appearance with Style Sheets".

Note: DES 2.0 users must add "DESMultiSegTextBox" to their style sheet file.

 TextAlign (enum PeterBlum.DES.TextAlign) – By default, text is left justified in western cultures. Often users like to
right justify numeric values in textboxes. This property offers justification. It adds the attribute style='text-
align:value;' to the <input type='text'> tag.

Some browsers do not support the text-align style and will ignore this property.

The enumerated type PeterBlum.DES.TextAlign has these values:

o Default – This is the default. When set to Default, no style=text-align attribute is written, allowing the
style sheets of the page to manage it.

o Left

o Center

o Right

o Justify

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 164 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 ToolTip (string) – The text to show in a tooltip on the TextBox. It defaults to "".

The MultiSegmentDataEntry control has its own ToolTip property. If it’s assigned and this ToolTip property is not
assigned, the segment inherits the value from the MultiSegmentDataEntry control.

When using the “Enhanced ToolTips” feature, the browser’s tooltip will be replaced by a PopupView. See the
Interactive Pages User’s Guide.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 165 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Behavior Properties
 ID (string) – Gets the ID of the TextBox control. It is always MultiSegmentDataEntry.ID + "_" + SegmentNumber.

(SegmentNumber starts at 1.) Note: This is a read-only property.

Use it to programmatically assign the ID to a Validator. Alternatively, you can enter the ID into the Validator’s
ControlIDToEvaluate property by using the pattern MultiSegmentDataEntry.ID + "_" +
SegmentNumber.

 Visible (Boolean) – When true, the segment is visible. When false, the segment is not used except it takes up a
segment number. Segments following an invisible segment are still used.

It defaults to true.

 TabOnTheseKeys (string) – Define a list of characters that when typed, tab to the next segment. It allows the user to hit
keys that are usually the formatting between segments to jump. For example, when entering a phone number in this
format, (###) ###-####, the ")", space and "-" characters should be added here.

It accepts a list of characters. For example, to tab on the ")" and space character, enter ") ".

When a segment requires the same number of characters as in MaxLength and
MultiSegmentDataEntry.TabAtMaxLength is true, do not use this property because it will auto-tab when the
segment reaches its limit. Instead, put the characters into the next segment’s IgnoreTheseCharsBefore property.

Tabbing never occurs when the textbox is empty (in case the user hits several of these characters back-to-back that might
advance on each TextBox).

This property doesn’t apply to the last segment.

This is one of several tabbing features. The user can hit TAB, use MultiSegmentDataEntry.TabAtMaxLength and
MultiSegmentDataEntry.TabOnEnterKey.

It defaults to "".

 DisableAutoComplete (Boolean) – Several browsers provide an “autocomplete” or “autofill” feature, where a list of
previous entries appears as the user starts typing. This behavior often is inappropriate as the browser is guessing to what
the items are and its guess may be incorrect. For example, an integer textbox may still popup a list containing alphabetic
entries. These browsers offer the ability to disable autocomplete on a field-by-field basis. Set this to true to disable it
on this control. It defaults to false.

 DisablePaste (Boolean) – When you prefer that the user cannot paste anything into the TextBox, set this to true. It is
supported on Internet Explorer and any other browser that supports the 'onpaste' event. It defaults to false.

 TextBox (PeterBlum.DES.IntegerTextBox) – A reference to the IntegerTextBox control that supports the TextBox in
this segment. Use it to programmatically modify any other properties not made directly available in the
PeterBlum.DES.IntegerTextSegment class. Usually you modify its properties in the Page_Load() and post
back event handler methods. Note: This is a read-only property.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 166 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Spinners Properties
The Spinner is an extension to the PeterBlum.DES.IntegerTextBox. It provides a pair of arrow buttons that
increment or decrement the value of the TextBox when clicked.

The Spinner is an extension to the IntegerSegment. It provides a pair of arrow buttons that increment or decrement the value
of the textbox when clicked. You can customize the button appearance and autorepeat speed with properties on
PeterBlum.DES.Globals.Page.SpinnerManager.

 ShowSpinner (Boolean) – When true, the spinner control is shown. When false, it is not. It defaults to false.

Note: Spinners are only supported on these browsers: IE Windows 5+, Netscape 7+, Mozilla 1.1+, FireFox, Opera
7+, and Safari. Other browsers will ignore this property.

 IncrementValue (Double) – The number to add or subtract to the current value. It supports decimal values. It defaults to
1.0.

 SpinnerMinValue (String) - Establishes a minimum value for the spinner. When it reaches this number, it stops
spinning. Leave blank when not used. Otherwise enter a decimal value.

When the textbox is blank and the up arrow is hit, this is the first value shown in the textbox.

It defaults to "".

 SpinnerMaxValue (String) - Establishes a maximum value for the spinner. When it reaches this number, it stops
spinning. Leave blank when not used. Otherwise enter a decimal value.

When the textbox is blank and the down arrow is hit, this is the first value shown in the textbox.

It defaults to "".

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 167 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Hint Properties
License Note: This feature requires a license for the Peter’s Interactive Pages.

The MultiSegmentDataEntry control supports the Interactive Hint feature. Most of its properties are defined on the control
itself. See “Hint Properties” on the MultiSegmentDataEntry Control Properties. The segment defines the text of the hint.

The Properties Editor shows these properties in the “Hint” category.

 Hint (string) – When using the Interactive Hints system, this is the text of the hint.

When blank, if the segment is using its ToolTip property, the ToolTip is used as the text of the hint.

HTML tags are permitted. ENTER and LINEFEED characters are not. When the hint is shown in the browser's status
bar, HTML tags will automatically be stripped.

It defaults to "".

 HintLookupID (string) – Gets the value for Hint through the String Lookup System. (See “The String Lookup System”
in the General Features Guide.) The LookupID and its value should be defined within the String Group of Hint. If no
match is found OR this is blank, Hint will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 HintHelp (string) – When the Hint uses a PopupView, this provides data for use by the Help Button and other features
on the PopupView. Its use depends on the PopupView.HelpBehavior property. (The PopupView is determined by the
HintFormatter with its PopupViewName property.)

The PopupView has an optional Help button. When setup, the user can click it to bring up additional information, such
as a new page of help text.

Here is how to use the HintHelp based on PopupView.HelpBehavior:

o None - Do not show a Help Button. The HintHelp property is not used.

o ButtonAppends - Add the text from HintHelp after the existing message. Use
PopupView.AppendHelpSeparator to separate the two parts. When clicked, the Help button disappears and
the message box is redrawn.

o ButtonReplaces - Replace the text in the message with the HintHelp. When clicked, the Help button
disappears and the message box is redrawn.

o Title - The text appears in the header as the title. It replaces the PopupView.HeaderText. There is no Help
Button. If HintHelp is blank, PopupView.HeaderText is used.

o Hyperlink - Provide a Hyperlink. The Help Info text will appear in the "{0}" token of
PopupView.HyperlinkUrlForHelpButton.

For example, the HyperlinkUrlForHelpButton property may be "{0}" and this property is the complete URL
"/helpfiles/helptopic1000.aspx".

Another example uses the token for just a querystring parameter, like this: HyperlinkUrlForHelpButton =
"/gethelp.aspx?topicid={0}" and this property contains the number of the ID.

o HyperlinkNewWindow - Provide a Hyperlink that opens a new window. The HintHelp text will appear in
the “{0}” token of PopupView.HyperlinkUrlForHelpButton.

o ButtonRunsScript - Runs the script supplied in PopupView.ScriptForHelpButton. The HintHelp text
will replace the token “{0}” in that script.

This defaults to "".

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 168 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 HintHelpLookupID (string) – Gets the value for HintHelp through the String Lookup System. (See “The String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of Hint. If no match is found OR this is blank, HintHelp will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 169 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Properties for the PeterBlum.DES.DropDownListSegment Class
For directions on creating a PeterBlum.DES.DropDownListSegment object, see step 0 in “Adding a
MultiSegmentDataEntry Control”.

Remember that DropDownLists have two values associated with each item: the text shown to the user and the value. The
MultiSegmentDataEntry control uses the value, not the text shown to the user.

By default, only the Items property is saved in the control’s ViewState. If you set other properties programmatically, you
must do it every time. Also you can save an individual property in the ViewState by calling the
TrackPropertyInViewState("propertyname") method on the Segment object.

Click on any of these topics to jump to them:

 Get and Set Text Properties

 Split and Join Text Properties

 DropDownList Items Properties

 Data Entry and Validation Rules Properties

 Appearance Properties

 Behavior Properties

 Hint Properties

Get and Set Text Properties
These three properties interact directly with the DropDownList’s current value. Usually you will assign a string to the
MultiSegmentDataEntry.Text and TextNoSeparator properties and they will split and join the string amongst the
segments. See the next topic. Use these when you are working with something other than a string whose elements you
convert to text and are associated with individual segments.

 Text (string) – Gets and sets the value assigned to the DropDownList. It does not validate or parse the text. If you want
the MultiSegmentDataEntry control to parse a string, assign your string to MultiSegmentDataEntry.Text or
MultiSegmentDataEntry.TextNoSeparator.

When getting text, if there is no selection, it returns "".

Use this when MultiSegmentDataEntry does not handle your data format. For example, when editing a date, you may
start with a System.DateTime structure, not a string. So convert each element – day, month, and year – to a string,
then assign it here.

 IsValid (Boolean) – Returns true when the DropDownList matches the segment’s validation rules, like Required, the
character set, and text length. Returns false, when it fails to match the validation rules. Usually you will attach a
MultiSegmentDataEntryValidator to the MultiSegmentDataEntry control to validate it.

 IsEmpty (Boolean) – Returns true when the DropDownList has no selection. Returns false when it has a selection.
When the DropDownList contains a value matching TextWhenBlank, it is not considered empty.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 170 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Split and Join Text Properties
These properties support the MultiSegmentDataEntry.Text and TextNoSeparator properties as they split and join one
string amongst the segments.

 MaxLength (integer) – The maximum number of characters required in this segment. A maximum is always required. It
provides a limit for splitting the text when you set the MultiSegmentDataEntry.Text property.

It defaults to 4.

 FormattingTextBefore (string) – Text that appears before the value that goes into the DropDownList. It is used to split
and join the string you supply in the MultiSegmentDataEntry.Text property.

When splitting text, if this string is found, it is skipped so the text after it will be assigned to the DropDownList.

When joining text, FormattingTextBefore precedes the value from the DropDownList.

If DisplayTextBefore is blank, this property is shown on the page before the DropDownList.

It defaults to "".

 FormattingTextAfter (string) – Text that appears after the value that goes into the DropDownList. It is used to split and
join the string you supply in the MultiSegmentDataEntry.Text property.

When splitting text, if this string is found, it is skipped so the text after it will be assigned to the next segment.

When joining text, FormattingTextAfter follows the value from the DropDownList.

If DisplayTextAfter is blank, this property is shown on the page after the DropDownList.

It defaults to "".

 IgnoreTheseCharsBefore (Boolean) – When setting the MultiSegmentDataEntry.Text property, the control splits
your string amongst each segment. Each character in IgnoreTheseCharsBefore will be ignored if found preceding the
value that is assigned to the DropDownList. It helps the MultiSegmentDataEntry control support badly formatted data.

When splitting, data you retrieve from your database may contain inappropriate characters, due to inconsistent data entry
rules. Perhaps another web page or application was used to collect this data and its validation rules did not stop entries
that you now consider illegal formats.

For example, you demand phone numbers to have this format: (###) ###-####. But your database contains phone
numbers with additional spaces: (###) ### - ####. The space character is inappropriate here and can cause the
MultiSegmentDataEntry control to parse incorrectly. By adding the space character to IgnoreTheseCharsBefore, it will
be skipped as the data is split. In fact, the space character is a very common entry for this property.

This property permits a list of characters. For example, if you want to ignore dash, exclamation point, and slash, just
enter "-!/".

It does a case insensitive match in case you want to include letters here.

If you enter the text "a-z" (in lowercase), it is a special symbol that means consider all letters (including Unicode) to be
ignored. Only use it when this segment and the next visible segment do not allow letters in their DropDownLists.

If you enter the text "0-9", it is a special symbol that means consider all digits to be ignored. Only use it when this
segment and the next visible segment do not allow digits in their DropDownLists.

It defaults to "".

 IgnoreTheseCharsAfter (Boolean) – When setting the MultiSegmentDataEntry.Text property, the control splits your
string amongst each segment. Each character in IgnoreTheseCharsAfter will be ignored if found after the value that is
assigned to the DropDownList. It helps the MultiSegmentDataEntry control support badly formatted data.

When splitting, data you retrieve from your database may contain inappropriate characters, due to inconsistent data entry
rules. Perhaps another web page or application was used to collect this data and its validation rules did not stop entries
that you now consider illegal formats.

For example, you demand phone numbers to have this format: (###) ###-####. But your database contains phone
numbers with additional spaces: (###) ### - ####. The space character is inappropriate here and can cause the

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 171 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

MultiSegmentDataEntry control to parse incorrectly. By adding the space character to IgnoreTheseCharsAfter, it will
be skipped as the data is split. In fact, the space character is a very common entry for this property.

This property permits a list of characters. For example, if you want to ignore dash, exclamation point, and slash, just
enter "-!/".

It does a case insensitive match in case you want to include letters here.

If you enter the text "a-z" (in lowercase), it is a special symbol that means consider all letters (including Unicode) to be
ignored. Only use it when this segment and the next visible segment do not allow letters in their DropDownLists.

If you enter the text "0-9", it is a special symbol that means consider all digits to be ignored. Only use it when this
segment and the next visible segment do not allow digits in their DropDownLists.

It defaults to "".

 NoTextBeforeWhenBlank (Boolean) – When getting the value from the MultiSegmentDataEntry.Text property, if
the DropDownList is blank, do not add FormattingTextBefore to the result when this is true. When false, add
FormattingTextBefore.

Only set to true in these cases:

o When it’s the last segment

o When Required is false and TextWhenBlank has been assigned

Otherwise there will be no text representing this segment and it will not be parsed correctly the next time.

A good example of this is the extension on a phone number. Its usually "x" + digits. When the digits are missing, also
remove the "x". When the extension is included, MultiSegmentDataEntry.Text returns (###) ###-####x####.
When the extension is omitted, MultiSegmentDataEntry.Text returns (###) ###-####.

It defaults to false.

 NoTextAfterWhenBlank (Boolean) – When getting the value from the MultiSegmentDataEntry.Text property, if the
DropDownList is blank, do not add FormattingTextAfter to the result when this is true. When false, add
FormattingTextAfter.

Only set to true in these cases:

o When it’s the last segment

o When Required is false and TextWhenBlank has been assigned

Otherwise there will be no text representing this segment and it will not be parsed correctly the next time.

It defaults to false.

 TextWhenBlank (string) – If the DropDownList has no selection and the Required property is false, this text will be
used when rejoining.

A good example of using this property: set up the area code segment of a phone number to return " " (three spaces).
Phone numbers to be entered without an area code will be formatted like this: () ###-####.

When splitting, if this text is found (case insensitive), the DropDownList is blank.

When joining, if the DropDownList is blank, this text is inserted.

This is not used when Required is true.

It defaults to "".

 LettersUppercase (Boolean) – Used when splitting text. When true, uppercase letters are permitted. When false
and found in the text, the end of this segment’s text has been reached. It defaults to false.

 LettersLowercase (Boolean) – Used when splitting text. When true, lowercase letters are permitted. When false
and found in the text, the end of this segment’s text has been reached. It defaults to false.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 172 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 Digits (Boolean) – Used when splitting text. When true, digit characters are permitted. When false and found in the
text, the end of this segment’s text has been reached. It defaults to true.

 OtherCharacters (string) – Used assigned, each character in this property is permitted in the DropDownList value.
When "" and found in the text, the end of this segment’s text has been reached.

It defaults to "".

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 173 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

DropDownList Items Properties
The DropDownList control within this segment is the System.Web.UI.WebControls.DropDownList class. The
properties that set up the items shown in the list are offered here: Items, DataSource, DataMember, DataTextField,
DataValueField, and DataTextFormatString. See System.Web.UI.WebControls.DropDownLists Members for details.

When you use the DataSource property, you must call the MultiSegmentDataEntry.DataBind() method to
convert its data into the Items collection. Do this in the Page_Load() method when Page.IsPostBack is false or post
back event handler method when the list changes after post back. The ViewState will preserve the Items collection between
post backs.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.dropdownlist.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.dropdownlist_members.aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 174 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Data Entry and Validation Rules Properties
 Required (Boolean) – When true, the DropDownList requires a selection or the MultiSegmentDataEntryValidator will

report an error. When false, the DropDownList can have no selection. In that case, you should consider using
TextWhenBlank to provide some kind of marker where the data portion of the segment goes.

It defaults to true.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 175 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Appearance Properties
 DisplayTextBefore (string) – Text that is shown before the DropDownList. HTML tags are permitted. Use it to establish

text and HTML formatting that appears before the DropDownList.

If blank, FormattingTextBefore is used. Often FormattingTextBefore lacks some HTML that provides good onscreen
formatting. For example, when FormattingTextBefore contains a left parenthesis, when shown on the page, you feel it
needs to be " (".

It defaults to "".

 DisplayTextAfter (string) – Text that is shown after the DropDownList. HTML tags are permitted. Use it to establish
text and HTML formatting that appears after the DropDownList.

If blank, FormattingTextAfter is used. Often FormattingTextAfter lacks some HTML that provides good onscreen
formatting. For example, when FormattingTextAfter contains a right parenthesis, when shown on the page, you feel it
needs to be ") ".

It defaults to "".

 Width (string) – The width of the DropDownList. Use values showing either pixels or percentages.

When "", it is not used.

It defaults to "".

 CssClass (string) – Style sheet class name to apply to the DropDownList. (It does not affect the text contributed by
FormattingTextBefore, DisplayTextBefore, FormattingTextAfter, or DisplayTextAfter.)

The MultiSegmentDataEntry control has numerous properties for the formatting all text and inputs. This property
overrides those settings on the segment’s DropDownList.

It defaults to "".

 ToolTip (string) – The text to show in a tooltip on the DropDownList. It defaults to "".

The MultiSegmentDataEntry control has its own ToolTip property. If it’s assigned and this ToolTip property is not
assigned, the segment inherits the value from the MultiSegmentDataEntry control.

When using the “Enhanced ToolTips” feature, the browser’s tooltip will be replaced by a PopupView. See the
Interactive Pages User’s Guide.

Note: Internet Explorer for Windows v5+ never shows a tooltip on DropDownLists.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 176 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Behavior Properties
 ID (string) – Gets the ID of the DropDownList control. It is always MultiSegmentDataEntry.ID + "_" +

SegmentNumber. (SegmentNumber starts at 1.) Note: This is a read-only property.

Use it to programmatically assign the ID to a Validator. Alternatively, you can enter the ID into the Validator’s
ControlIDToEvaluate property by using the pattern MultiSegmentDataEntry.ID + "_" +
SegmentNumber.

 Visible (Boolean) – When true, the segment is visible. When false, the segment is not used except it takes up a
segment number. Segments following an invisible segment are still used.

It defaults to true.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 177 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Hint Properties
License Note: This feature requires a license for the Peter’s Interactive Pages.

The MultiSegmentDataEntry control supports the Interactive Hint feature. Most of its properties are defined on the control
itself. See “Hint Properties” on the MultiSegmentDataEntry Control Properties. The segment defines the text of the hint.

The Properties Editor shows these properties in the “Hint” category.

 Hint (string) – When using the Interactive Hints system, this is the text of the hint.

When blank, if the segment is using its ToolTip property, the ToolTip is used as the text of the hint.

HTML tags are permitted. ENTER and LINEFEED characters are not. When the hint is shown in the browser's status
bar, HTML tags will automatically be stripped.

It defaults to "".

 HintLookupID (string) – Gets the value for Hint through the String Lookup System. (See “The String Lookup System”
in the General Features Guide.) The LookupID and its value should be defined within the String Group of Hint. If no
match is found OR this is blank, Hint will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 HintHelp (string) – When the Hint uses a PopupView, this provides data for use by the Help Button and other features
on the PopupView. Its use depends on the PopupView.HelpBehavior property. (The PopupView is determined by the
HintFormatter with its PopupViewName property.)

The PopupView has an optional Help button. When setup, the user can click it to bring up additional information, such
as a new page of help text.

Here is how to use the HintHelp based on PopupView.HelpBehavior:

o None - Do not show a Help Button. The HintHelp property is not used.

o ButtonAppends - Add the text from HintHelp after the existing message. Use
PopupView.AppendHelpSeparator to separate the two parts. When clicked, the Help button disappears and
the message box is redrawn.

o ButtonReplaces - Replace the text in the message with the HintHelp. When clicked, the Help button
disappears and the message box is redrawn.

o Title - The text appears in the header as the title. It replaces the PopupView.HeaderText. There is no Help
Button. If HintHelp is blank, PopupView.HeaderText is used.

o Hyperlink - Provide a Hyperlink. The Help Info text will appear in the "{0}" token of
PopupView.HyperlinkUrlForHelpButton.

For example, the HyperlinkUrlForHelpButton property may be "{0}" and this property is the complete URL
"/helpfiles/helptopic1000.aspx".

Another example uses the token for just a querystring parameter, like this: HyperlinkUrlForHelpButton =
"/gethelp.aspx?topicid={0}" and this property contains the number of the ID.

o HyperlinkNewWindow - Provide a Hyperlink that opens a new window. The HintHelp text will appear in
the “{0}” token of PopupView.HyperlinkUrlForHelpButton.

o ButtonRunsScript - Runs the script supplied in PopupView.ScriptForHelpButton. The HintHelp text
will replace the token “{0}” in that script.

This defaults to "".

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 178 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 HintHelpLookupID (string) – Gets the value for HintHelp through the String Lookup System. (See “The String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of Hint. If no match is found OR this is blank, HintHelp will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 179 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Examples
Click on any of these topics to jump to them:

 U.S./Canada Phone Number

 IP Address

 Date

U.S./Canada Phone Number
This example includes the phone number extension in the last segment.

Here are some of the rules it includes:

 There are 4 segments. Each uses a TextBox that is limited to digits. Segment 1 and 2 require 3 digits. Segment 3 requires
4 digits. Segment 4 is optional and allows up to 5 digits.

 Segment 1, the area code, has parenthesis surrounding it. It provides several other characters for the
IgnoreTheseCharsBefore/After properties. It tabs on certain characters.

 Segment 2, the local exchange, has a space before it and dash after. It provides several other characters for the
IgnoreTheseCharsBefore/After properties. It tabs on certain characters.

 Segment 3 tabs on certain characters

 Segment 4 shows the text “ext:” for the extension but uses the text “x” for FormattedTextBefore.

 Style sheets have been applied to establish a border around the entire control and dim the borders on each textbox.

<des:MultiSegmentDataEntry id="MultiSegmentDataEntry1" runat="server"
 CssClass="DESTBMultiSegContainer">
<Segments>
 <des:TextSegment CssClass="DESTBMultiSegTextBox"
 IgnoreTheseCharsBefore=" " IgnoreTheseCharsAfter=" "
 FormattingTextBefore="(" FormattingTextAfter=") "
 DisplayTextBefore="(" DisplayTextAfter=")"
 AutoWidth="False" Width="30px" MinLength="3" MaxLength="3"
 TabOnTheseKeys=") -" ></des:TextSegment>
 <des:TextSegment CssClass="DESTBMultiSegTextBox"
 IgnoreTheseCharsAfter=" " FormattingTextAfter="-"
 AutoWidth="False" Width="30px" MinLength="3" MaxLength="3"
 TabOnTheseKeys="- " ></des:TextSegment>
 <des:TextSegment CssClass="DESTBMultiSegTextBox"
 IgnoreTheseCharsAfter=" "
 AutoWidth="False" Width="40px" MinLength="4" MaxLength="4"
 TabOnTheseKeys="ext:" ></des:TextSegment>
 <des:TextSegment CssClass="DESTBMultiSegTextBox"
 FormattingTextBefore=" x" DisplayTextBefore="&nbsp;ext:"
 MaxLength="5" Required="False"
 NoTextBeforeWhenBlank="True" ></des:TextSegment>
</Segments>
</des:MultiSegmentDataEntry>

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 180 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

IP Address
A four segment field where all allow only integers. Ranges are established both on the optional spinners and the
RangeValidators attached to individual segments. (You could use a MultiConditionValidator to provide a single error
message. It would use 4 RangeConditions to evaluate each textbox.)

<des:MultiSegmentDataEntry id="MultiSegmentDataEntry1" runat="server">
<Segments>
 <des:IntegerTextSegment FormattingTextAfter="." TabOnTheseKeys="."
 ShowSpinner="True" SpinnerMinValue="0" SpinnerMaxValue="255"
 MaxLength="3"></des:IntegerTextSegment>
 <des:IntegerTextSegment FormattingTextAfter="." TabOnTheseKeys="."
 ShowSpinner="True" SpinnerMinValue="0" SpinnerMaxValue="255"
 MaxLength="3"></des:IntegerTextSegment>
 <des:IntegerTextSegment FormattingTextAfter="." TabOnTheseKeys="."
 ShowSpinner="True" SpinnerMinValue="0" SpinnerMaxValue="255"
 MaxLength="3"></des:IntegerTextSegment>
 <des:IntegerTextSegment ShowSpinner="True" SpinnerMinValue="0"
 SpinnerMaxValue="255" MaxLength="3"></des:IntegerTextSegment>
</Segments>
</des:MultiSegmentDataEntry>
<des:RangeValidator id="RangeValidator1" runat="server"
 ErrorMessage="Between 0 and 255"
 ControlIDToEvaluate="MultiSegmentDataEntry1_1" DataType="Integer"
 Minimum="0" Maximum="255">
</des:RangeValidator>
<des:RangeValidator id="RangeValidator2" runat="server"
 ErrorMessage="Between 0 and 255"
 ControlIDToEvaluate="MultiSegmentDataEntry1_2" DataType="Integer"
 Minimum="0" Maximum="255">
</des:RangeValidator>
<des:RangeValidator id="RangeValidator3" runat="server"
 ErrorMessage="Between 0 and 255"
 ControlIDToEvaluate="MultiSegmentDataEntry1_3" DataType="Integer"
 Minimum="0" Maximum="255">
</des:RangeValidator>
<des:RangeValidator id="RangeValidator4" runat="server"
 ErrorMessage="Between 0 and 255"
 ControlIDToEvaluate="MultiSegmentDataEntry1_4" DataType="Integer"
 Minimum="0" Maximum="255">
</des:RangeValidator>

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 181 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Date
This Date control uses DropDownList segments for month and year. It uses an IntegerTextSegment for the day. It has a
DataTypeCheckValidator attached to confirm it uses a valid date.

It uses the hint feature with a label showing a hint for each segment.

Note: The DateTextBox in Peter’s Date and Time module is a far more powerful and elegant date field with popup calendar.
This is a very lightweight example to demonstrate using DropDownListSegments and a Validator.

<des:MultiSegmentDataEntry id="MultiSegmentDataEntry1" runat="server"
 SharedHintFormatterName="LtYellow-Small" >
<Segments>
 <des:DropDownListSegment FormattingTextAfter="/" Hint="Month"
 DisplayTextAfter=" " MaxLength="2">
 <Items>
 <asp:ListItem Value="01">Jan</asp:ListItem>
 <asp:ListItem Value="02">Feb</asp:ListItem>
 <asp:ListItem Value="03">Mar</asp:ListItem>
 <asp:ListItem Value="04">Apr</asp:ListItem>
 <asp:ListItem Value="05">May</asp:ListItem>
 <asp:ListItem Value="06">Jun</asp:ListItem>
 <asp:ListItem Value="07">Jul</asp:ListItem>
 <asp:ListItem Value="08">Aug</asp:ListItem>
 <asp:ListItem Value="09">Sep</asp:ListItem>
 <asp:ListItem Value="10">Oct</asp:ListItem>
 <asp:ListItem Value="11">Nov</asp:ListItem>
 <asp:ListItem Value="12">Dec</asp:ListItem>
 </Items>
 </des:DropDownListSegment>
 <des:IntegerTextSegment FormattingTextAfter="/"
 AutoWidth="False" Width="20px"
 FillLeadZeros="2" DisplayTextAfter=" " MaxLength="2"
 ShowSpinner="True" SpinnerMinValue="1" SpinnerMaxValue="31"
 Hint="Day. Between 1-31" ></des:IntegerTextSegment>
 <des:DropDownListSegment Hint="Year">
 <Items>
 <asp:ListItem Value="1999">1999</asp:ListItem>
 <asp:ListItem Value="2000">2000</asp:ListItem>
 <asp:ListItem Value="2001">2001</asp:ListItem>
 <asp:ListItem Value="2002">2002</asp:ListItem>
 <asp:ListItem Value="2003">2003</asp:ListItem>
 <asp:ListItem Value="2004">2004</asp:ListItem>
 </Items>
 </des:DropDownListSegment>
</Segments>
</des:MultiSegmentDataEntry>
<asp:Label id="HintLabel1" runat="server"></asp:Label>
<des:DataTypeCheckValidator id="DataTypeCheckValidator1" runat="server"
 ControlIDToEvaluate="MultiSegmentDataEntry1"
 ErrorMessage="Invalid date: {TEXTVALUE}" DataType="Date">
</des:DataTypeCheckValidator>

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 182 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

MultiSegmentDataEntryValidator Control
Note: If you are using the Native Validation Framework, there is another MultiSegmentDataEntryValidator. See
“MultiSegmentDataEntryValidator Control”.

Condition: MultiSegmentDataEntryCondition

Supported controls: MultiSegmentDataEntry

Can evaluate blank fields: Determined by the IgnoreBlankText property

The MultiSegmentDataEntryValidator confirms that the segments of the MultiSegmentDataEntry control match the rules you
specified on the Segment objects. You should always use this Validator or its Condition on each MultiSegmentDataEntry
control.

This Validator uses DES’s Validation framework. It has the same properties and expects to work with DES’s
ValidationSummary and other Validation framework features. See the Validation User’s Guide for details of DES
Validators.

Using This Condition
Specify the MultiSegmentDataEntry control with the ControlIDToEvaluate property.

Example

Determine if MultiSegmentDataEntry1 matches its rules for a phone number.

<des:MultiSegmentDataEntryValidator
 id=MultiSegmentDataEntryValidator1 runat="server"
 ControlIDToEvaluate="MultiSegmentDataEntry1"
 ErrorMessage="A phone number requires this format: ### ### ####">
</des:MultiSegmentDataEntryValidator >

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 183 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Condition Properties for MultiSegmentDataEntryValidator
Each Validator control includes a Condition that has several properties that require setup. The Properties Editor shows them
in the “Condition” section. For all properties not shown here, see the Validation User’s Guide.

The following list are properties specific to this Condition:

 ControlIDToEvaluate (string) – Identifies the MultiSegmentDataEntry control that will be evaluated. This property
takes the ID of the control.

An exception is thrown at runtime when this is blank, unknown, not in the same or ancestor naming container, is
Visible=false, or a control class that is not supported.

 ControlToEvaluate (System.Web.UI.Control) – An alternative to ControlIDToEvaluate. Use it when the
MultiSegmentDataEntry control is not in the same or ancestor naming container. It must be assigned programmatically.
For example, if you have a Validator instance in the variable “Val1” and a MultiSegmentDataEntry instance in the
variable “MultiSegmentDataEntry1”, write code like this: Val1.ControlToEvaluate =
MultiSegmentDataEntry1.

When programmatically assigning properties to a Validator control or Condition class, if you have access to the control
object that will be evaluated, it is better to assign it here than assign its ID to the ControlIDToEvaluate property
because DES operates faster using ControlToEvaluate.

 IgnoreBlankText (Boolean) – Determines how the Validator evaluates when all segments are blank.

When true, the Condition cannot evaluate. You use a RequiredTextValidator to report errors on it.

When false, it evaluates as “failed”, which reports an error.

It defaults to true.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 184 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Subclassing MultiSegmentDataEntry
If you subclass PeterBlum.DES.MultiSegmentDataEntry, you must tell DES about it so it can be used with DES’s
validators. Here’s how.

1. Open the custom.des.config file in your [web application]\DES folder.

2. Locate the <ThirdPartryControls> section.

3. Add this node to <ThirdPartyControls> where class is your full class name.

<ThirdPartyControl class="class" sameas="textbox" property="ValidatorText" >
 <GetTextScript>[DES_GetTextMSDE]</GetTextScript>
 <GetChildHUScript>[DES_GetChildMSDE]<GetChildHUScript>
</ThirdPartyControl>

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 185 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Additional Topics for Using These Controls
This section covers a variety of special cases when using these controls.

Click on any of these topics to jump to them:

 Page Level Properties

 Validation with the Native Validation Framework

 JavaScript Support Functions

 Adding Your JavaScript to the Page

 Troubleshooting

These topics are found in the General Settings Guide:

 Using these Controls with AJAX

 The ViewState and Preserving Properties for PostBack

 Establishing Default Localization for the Web Form

 Using Style Sheets

 The String Lookup System

 The Global Settings Editor

 Using Server Transfer and Using Alternative HttpHandlers

 Using a Redistribution License

 Browser Support and The TrueBrowser Class

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 186 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Page Level Properties
The PeterBlum.DES.Globals.Page object contains several properties that affect all controls on the page. They include
setting the CultureInfo object, getting the Browser details, and enabling JavaScript.

The Page property on PeterBlum.DES.Globals uses the class PeterBlum.DES.DESPage. When accessed through
PeterBlum.DES.Globals.Page, you will have an object that is unique to the current thread. It is really a companion to the
Page object of a web form, hosting details related to DES. Properties set on it will not affect any other request for a page.

Many of its properties can be set by using the PageManager control. See the General Features Guide.

Properties on PeterBlum.DES.Globals.Page
You generally assign properties to PeterBlum.DES.Globals.Page in your Page_Init() or Page_Load() method. Your
post back event handler methods can also assign properties.

 CultureInfo (System.Globalization.CultureInfo) – Cultures define date, time, number and text formatting for a program
to follow. DES uses this value within its data types (PeterBlum.DES.DESTypeConverter classes) as it translates
between strings and values. For example, the Date data type uses this to get the DateTimeFormatInfo class, which
defines the short date pattern (ex: MM/dd/yyyy) and date separator. The Currency data types use the NumberFormatInfo
class to get the currency symbol, decimal symbol, and number of decimal places.

The CultureInfo property uses CultureInfo.CurrentCulture by default. This value is determined by the web server’s .Net
settings, the web.config’s <globalization> tag, or the <% @Page %> tag with the Culture property.

Web.Config setting – Affects the entire site
<globalization Culture="en-US" [other properties] />

Page Setting – Affects a page
<%@Page Culture="en-US" [other page properties] %>

You can set it programmatically in your Page_Init() method or in the Application_BeginRequest()
method of Global.asax. Use the .Net Framework method CultureInfo.CreateSpecificCulture(). For
example, assigning the US culture looks like this:

PeterBlum.DES.Globals.Page.CultureInfo =
 CultureInfo.CreateSpecificCulture("en-US")

Changing the properties of CultureInfo programmatically

Assign values to PeterBlum.DES.Globals.Page.CultureInfo. Here are some examples:

 [C#]

System.Globalization.NumberFormatInfo vNFI =
 PeterBlum.DES.Globals.Page.CultureInfo.NumberFormat;
vNFI.DecimalSeparator = ".";
vNFI.CurrencySymbol = "€";

 [VB]

Dim vNFI As System.Globalization.NumberFormatInfo = _
 PeterBlum.DES.Globals.Page.CultureInfo.NumberFormat
vNFI.DecimalSeparator = "."
vNFI.CurrencySymbol = "€"

 Browser (PeterBlum.DES.TrueBrowser) – Detects the actual browser that is requesting the page and configures the
HTML and JavaScript code returned to work with that browser. If the browser doesn’t support the client-side scripting
code for filtering keystrokes, the SupportsKeyboardFiltering property is false and these textboxes do not generate
most of their client-side scripts. See “Browser Support” in the General Features Guide.

http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.currentculture(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/ydy4x04a(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.createspecificculture(vs.71).aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 187 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 InitialFocusControl (System.Web.UI.Control) – Sets the focus on the page to this control when the page is first loaded.
Assign this property to a reference to the control that should get the initial focus. If the control is hidden or disabled,
focus will not be set because browsers do not permit it.

Typically this is set within Page_Load() or a post back event handler.

When null/nothing, no field gets initial focus. It defaults to null/nothing.

Example

Set focus to a textbox associated with TextBox1:

[C#]

PeterBlum.DES.Globals.Page.InitialFocusControl = TextBox1;

[VB]

PeterBlum.DES.Globals.Page.InitialFocusControl = TextBox1

License Note: This property requires a license for the Peter’s Interactive Pages.

 JavaScriptEnabled (Boolean) – Determines if the browser really has JavaScript enabled. It automatically detects if
JavaScript is enabled after the first post back for a session. Prior to that first post back, it is true. After that, it is true
when JavaScript is enabled and false when it is not.

When false, the page will be generated as if the browser does not support JavaScript. No controls will output
JavaScript and may draw themselves differently, knowing that a client-side only feature that doesn’t work is
inappropriate to output. For example, spinners on textboxes are not included. The server side will handle these controls
gracefully on post back.

This feature stores its state in the Session collection. If the Session is not working or has been cleared, it will reset to
true and attempt to resolve the JavaScript state on the next post back.

If you do not want this detection feature enabled, set DetectJavaScript to false.

You can set this value directly in Page_Load(). It lets you turn off all of DES’s JavaScript features on demand. For
example, your customers can identify if they use JavaScript on their browser in a configuration screen. It only affects the
current page so set it on each page where needed.

 DetectJavaScript (Boolean) – When true, the JavaScriptEnabled property will monitor for JavaScript support. When
false, it will not. It defaults to the global DefaultDetectJavaScript property, which defaults to true. You set
DefaultDetectJavaScript with the Global Settings Editor.

 ValueWhenBlankMode (enum PeterBlum.DES.ValueWhenBlankMode) – When using the ValueWhenBlank and
ValueWhenBlankCssClass properties on any TextBox, this determines how setting focus to the textbox modifies the
appearance of the control. The enumerated type PeterBlum.DES.ValueWhenBlankMode has these values:

o RetainBoth – No changes are made. If ValueWhenBlank and ValueWhenBlankCssClass are in use, they
will remain in use while focus is on the field. The user will have to manually remove the current text.

o RemoveText – The text will change to "" if it is set to ValueWhenBlank. The style sheet class will not be
changed.

o RemoveBoth – The text will change to "" if it is set to ValueWhenBlank. The style sheet class will be
assigned to the original style sheet class name. This is the default.

It defaults to the global DefaultValueWhenBlankMode property, which defaults to RemoveBoth. You set
DefaultValueWhenBlankMode with the Global Settings Editor.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 188 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

 EnableButtonImageEffects (enum PeterBlum.DES.EnableButtonImageEffects) – Many buttons can show up to 3
images: normal, pressed, and mouseover. By default, these effects are set up based on the presence of the actual files.
However, DES cannot always see the files are present. For example, the URL uses http://.
EnableButtonImageEffects lets you to specify that the images are present or not.

The enumerated type has these values:

o None - Never use image effects.

o Always - Always use image effects. Assume that all image files are available

o Auto - Detect the files, if possible before using them

o Pressed - Always set up for pressed. Never set up for mouse over

o MouseOver - Always set up for mouseover. Never set up for pressed

It defaults to EnableButtonImageEffects.Auto.

 PageIsLoadingMsg (string) – The error message to display on the client-side if the user interacts with this control
before it is initialized. It defaults to “Page is loading. Please wait.”.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 189 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

SpinnerManager Property
The PeterBlum.DES.Globals.Page class and PageManager control offer the SpinnerManager property to customize the
look and behavior of spinners found on time and numeric textboxes throughout DES. Each of these properties has a default
that is set within the Global Settings Editor in the “SpinnerManager Defaults” section.

 SpinnerManager.IncrementButtonUrl (string) – The up arrow buttons shown in spinners (used by the time and
numeric textboxes throughout DES.) This string must be assigned to a URL to an image representing the concept “Next”.
It’s used by both the Next Minutes and Next Hours buttons.

It defaults to value of the DefaultIncrementButtonUrl property which is set in the Global Settings Editor and
defaults to "{APPEARANCE}/Shared/UpArrow1.gif" ().

The tag uses the text “+” for the alt= attribute. (It cannot be customized.)

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

Images for Pressed and MouseOver Effects

You can have images for pressed and mouseover effects as well as the normal image. The names of the image files
determine their purpose. Define the name of the normal image. For example, “myimage.gif”. Create the pressed version
and give it the same name, with “Pressed” added before the extension. For example, “myimagepressed.gif”. Create the
mouseover version and give it the same name, with “MouseOver” added before the extension. For example,
myimagemouseover.gif.

The IncrementButtonUrl property should refer to the normal image. DES will detect the presence of the other two files.
If any are missing, DES continues to use the normal image for that case. Note: Auto detection only works when the URL
is a virtual path to a file. You can manage this capability with the
PeterBlum.DES.Globals.Page.EnableButtonImageEffects.

If you need more control over paths for pressed and mouseover images, you can embed up to 3 URLs into this property
using a pipe (|) delimited list. The order is important: normal|pressed|mouseover. If you want to omit the
pressed image, use: normal||mouseover. If you want to omit the mouseover image, use: normal|pressed.

 SpinnerManager.DecrementButtonUrl (string) – The down arrow buttons shown in spinners (used by the time and
numeric textboxes throughout DES.) This string must be assigned to a URL to an image representing the concept
“Previous”. It’s used by both the Previous Minutes and Previous Hours buttons.

It defaults to value of the DefaultDecrementButtonUrl property which is set in the Global Settings Editor and
defaults to "{APPEARANCE}/Shared/DnArrow1.gif" ().

The tag uses the text “-” for the alt= attribute. (It cannot be customized.)

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

Images for Pressed and MouseOver Effects

You can have images for pressed and mouseover effects as well as the normal image. The names of the image files
determine their purpose. Define the name of the normal image. For example, “myimage.gif”. Create the pressed version
and give it the same name, with “Pressed” added before the extension. For example, “myimagepressed.gif”. Create the
mouseover version and give it the same name, with “MouseOver” added before the extension. For example,
myimagemouseover.gif.

The DecrementButtonUrl property should refer to the normal image. DES will detect the presence of the other two
files. If any are missing, DES continues to use the normal image for that case. Note: Auto detection only works when the

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 190 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

URL is a virtual path to a file. You can manage this capability with the
PeterBlum.DES.Globals.Page.EnableButtonImageEffects.

If you need more control over paths for pressed and mouseover images, you can embed up to 3 URLs into this property
using a pipe (|) delimited list. The order is important: normal|pressed|mouseover. If you want to omit the
pressed image, use: normal||mouseover. If you want to omit the mouseover image, use: normal|pressed.

 SpinnerManager.AutoRepeatSpeed1 (int) – The number of milliseconds to wait between each change to the textbox’s
value while the user holds the mouse down. This time is used for the first 5 command executions. AutoRepeatSpeed2 is
used after that.

It defaults to value of the DefaultAutoRepeatSpeed1 property which is set in the Global Settings Editor and defaults
to 500 (.5 seconds).

 SpinnerManager.AutoRepeatSpeed2 (int) – The number of milliseconds to wait between each change to the textbox’s
value while the user holds the mouse down. This time is used after the first 5 command executions. AutoRepeatSpeed1
is used before that.

It defaults to value of the DefaultAutoRepeatSpeed2 property which is set in the Global Settings Editor and defaults
to 250 (.25 seconds).

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 191 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Validation with the Native Validation Framework
DES provides its own validator controls to work with the Integer, Decimal, Currency, and Percent textboxes. They are used
in place of the native CompareValidator and RangeValidator, and provide equivalent functionality, but can handle the
differences in number formats that are not part of the original validator controls. They automatically configure themselves
based on the textbox’s property so you don’t have to set properties like Type, AllowsNegatives,
ShowThousandsSeparators, and ShowCurrencySymbol.

Each numeric textbox must have a CompareValidator attached that will verify its contents are legal. While these textboxes
may appear to work without it, always plan for users who don’t have client-side validation support on their browsers (or
hackers, who turn off javascript in hopes that your server side code doesn’t block their illegal inputs.)

Click on any of these topics to jump to them:

 Setting Up DES with the Native Validation Framework

 Check the DataType with the CompareValidator Control

 Compare To Value with the CompareValidator Control

 Compare Two Fields with the CompareValidator Control

 RangeValidator Control

 DifferenceValidator Control

 MultiSegmentDataEntryValidator

You will continue to use the native ASP.NET validators in many cases:

 RequiredFieldValidator – All DES textboxes and the MultiSegmentDataEntry control use it to determine if the
control is blank.

 CompareValidator – Appropriate for DES’s TextBox, FilteredTextBox, and MultiSegmentDataEntry control.

 RangeValidator – Appropriate for DES’s TextBox, FilteredTextBox, and MultiSegmentDataEntry control.

 RegularExpressionValidator – Appropriate for DES’s TextBox, FilteredTextBox, and MultiSegmentDataEntry
control. It works with the numeric textboxes although it’s unlikely you need it with them.

 CustomValidator – All DES textboxes and the MultiSegmentDataEntry control use it to determine if the control is
blank.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 192 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Setting Up DES with the Native Validation Framework
DES’s Validator controls for the Native Validation Framework are in the PeterBlum.DES.NativeValidators.dll
assembly, which is in your \bin folder. It was automatically added when you ran the Web Application Updater on your web
application.

You may want to take these actions before adding these validators to your webform:

 Add the PeterBlum.DES.NativeValidators assembly to the Visual Studio or Visual Web Developer toolbox.
See “Adding To The Visual Studio/Visual Web Developer Toolbox” in the Installation Guide.

 ASP.NET 1.x users should add this line to the top of the webform:

<% @Register tagPrefix="desmsval" namespace="PeterBlum.DES.NativeValidators"
 assembly="PeterBlum.DES.NativeValidators" %>

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 193 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Check the DataType with the CompareValidator Control
Applies to Integer, Decimal, Currency, and Percent TextBoxes. For others, use the original ASP.NET CompareValidator

The CompareValidator can check that the number entered exactly matches the formatting rules on the textbox when you set
its Operator property to DataTypeCheck. Always add this validator to these textboxes. It will automatically determine
the exact formatting rules from the textbox.

Using this Validator
Set the ID of the textbox in ControlToValidate. Set the Operator property to DataTypeCheck.

Properties
The CompareValidator from PeterBlum.DES.NativeValidators is very similar to its counterpart that comes with
ASP.NET. Here are its most important properties. Those not shown below are documented here:

CompareValidator Members

 ControlToValidate (string) – The ID of the control to evaluate. It can be any DES textbox except an Enhanced
TextBox or FilteredTextBox. The TextBox must be in the same Naming Container as the validator. This is a limitation
of the Native Validation Framework. Switch to DES Validation Framework to overcome this limitation.

 Operator (enum System.Web.UI.WebControls.ValidatorCompareOperator) – Always set this to DataTypeCheck
when using this validator to check for a legal number.

 DataType (enum PeterBlum.DES.NativeValidators.DataTypeMode) – Leave this set to Auto. It is only used with the
TimeOfDayTextBox.

Note: If you have two or more of these validators on one control, consider setting their Display property to Dynamic.

Example: IntegerTextBox

<des:IntegerTextBox id="IntegerTextBox1" runat="server" />

<desmsval:CompareValidator id="CompareValidator1" runat="server"
 ControlIDToEvaluate="IntegerTextBox1"
 ErrorMessage="Incorrect Integer value."
 Operator="DataTypeCheck" />

http://msdn2.microsoft.com/en-us/library/db330ayw(VS.71).aspx�
http://msdn2.microsoft.com/en-us/library/db330ayw(VS.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.comparevalidator_members(VS.71).aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 194 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Compare To Value with the CompareValidator Control
Applies to Integer, Decimal, Currency, and Percent TextBoxes. For others, use the original ASP.NET CompareValidator

Compare the value of the textbox to a number in the ValueToCompare property. It only evaluates when the textbox has a
legal value.

Using this Validator
Set the ID of the textbox in ControlToValidate. Set the number to compare in ValueToCompare. Set the comparison
operator in Operator.

Properties
The CompareValidator from PeterBlum.DES.NativeValidators is very similar to its counterpart that comes with
ASP.NET. Here are its most important properties. Those not shown below are documented here:

CompareValidator Members

 ControlToValidate (string) – The ID of the control to evaluate. It can be any DES textbox except an Enhanced
TextBox or FilteredTextBox. The TextBox must be in the same Naming Container as the validator. This is a limitation
of the Native Validation Framework. Switch to DES Validation Framework to overcome this limitation.

 Operator (enum System.Web.UI.WebControls.ValidatorCompareOperator) – The operator for the comparison between
ControlToValidate and ValueToCompare. Use any value from this enumerated type except DataTypeCheck.

o Equal

o NotEqual

o GreaterThan

o GreaterThanEqual

o LessThan

o LessThanEqual

 DataType (enum PeterBlum.DES.NativeValidators.DataTypeMode) – Leave this set to Auto. It is only used with the
TimeOfDayTextBox.

 ValueToCompare (string) – When using an IntegerTextBox, it must be a string representing an integer. For others, can
be either a string representing a decimal or integer. When programmatically assigning this value and you have an
integer or decimal variable, use the ToString() method on that variable.

Note: If you have two or more of these validators on one control, consider setting their Display property to Dynamic.

Example: IntegerTextBox

<des:IntegerTextBox id="IntegerTextBox1" runat="server" />

<desmsval:CompareValidator id="CompareValidator1" runat="server"
 ControlIDToEvaluate="IntegerTextBox1" Operator="LessThan"
 ValueToCompare="10"
 ErrorMessage="Must be less than 10."
 />

http://msdn2.microsoft.com/en-us/library/db330ayw(VS.71).aspx�
http://msdn2.microsoft.com/en-us/library/db330ayw(VS.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.comparevalidator_members(VS.71).aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 195 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Compare Two Fields with the CompareValidator Control
Applies to Integer, Decimal, Currency, and Percent TextBoxes. For others, use the original ASP.NET CompareValidator

Compare the value of one textbox to a value of another.

This is commonly used when developing a range where the first textbox must be less than or equal to the second.

Using this Validator
Set the ID of the two textboxes in ControlToValidate and ControlToCompare. Set the comparison operator in Operator.

Properties
The CompareValidator from PeterBlum.DES.NativeValidators is very similar to its counterpart that comes with
ASP.NET. Here are its most important properties. Those not shown below are documented here:

CompareValidator Members

 ControlToValidate (string) – The ID of the control to evaluate. It can be any DES textbox except an Enhanced
TextBox or FilteredTextBox. The TextBox must be in the same Naming Container as the validator. This is a limitation
of the Native Validation Framework. Switch to DES Validation Framework to overcome this limitation.

 Operator (enum System.Web.UI.WebControls.ValidatorCompareOperator) – The operator for the comparison between
ControlToValidate and ControlToCompare. Use any value from this enumerated type except DataTypeCheck.

o Equal

o NotEqual

o GreaterThan

o GreaterThanEqual

o LessThan

o LessThanEqual

 DataType (enum PeterBlum.DES.NativeValidators.DataTypeMode) – Leave this set to Auto. It is only used with the
TimeOfDayTextBox.

 ControlToCompare (string) – The ID from the second control to evaluate. If the ControlToValidate, it must be an
IntegerTextBox. If the ControlToValidate is a Decimal, Currency, or Percent TextBox, this can be any of those control
types. The TextBox must be in the same Naming Container as the validator.

Note: If you have two or more of these validators on one control, consider setting their Display property to Dynamic.

Example: Two IntegerTextBoxes

<des:IntegerTextBox id="StartInteger" runat="server" />
<des:IntegerTextBox id="EndInteger" runat="server" />

<desmsval:CompareValidator id="CompareValidator1" runat="server"
 ControlToValiInteger="StartInteger" ControlToCompare="EndInteger"
 Operator="LessThan"
 ErrorMessage="Start Integer must be less than the End Integer."
 />

http://msdn2.microsoft.com/en-us/library/db330ayw(VS.71).aspx�
http://msdn2.microsoft.com/en-us/library/db330ayw(VS.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.comparevalidator_members(VS.71).aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 196 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

RangeValidator Control
Applies to Integer, Decimal, Currency, and Percent TextBoxes. For others, use the original ASP.NET CompareValidator

Confirm the textbox value is within the range established by their minimum and maximum values.

Using this Validator
It automatically uses the TextBox’s MinValue and MaxValue properties to determine the range. If you leave those
properties unassigned, you can still set their values directly in the RangeValidator’s Minimum and Maximum properties.

Set the ID of the textbox in ControlToValidate. Set the minimum and maximum in either the TextBox’s MinValue and
MaxValue or in the RangeValidator’s Minimum and Maximum properties.

Properties
The RangeValidator from PeterBlum.DES.NativeValidators is very similar to its counterpart that comes with ASP.NET.
Here are its most important properties. Those not shown below are documented here:

RangeValidator Members

 ControlToValidate (string) – The ID of the control to evaluate. It can be any DES textbox except an Enhanced
TextBox or FilteredTextBox. The TextBox must be in the same Naming Container as the validator. This is a limitation
of the Native Validation Framework. Switch to DES Validation Framework to overcome this limitation.

 DataType (enum PeterBlum.DES.NativeValidators.DataTypeMode) – Leave this set to Auto. It is only used with the
TimeOfDayTextBox.

 Minimum (string) – Used when the associated textbox’s MinValue property has not been set. When using an
IntegerTextBox, it must be a string representing an integer. For others, can be either a string representing a decimal or
integer. When programmatically assigning this value and you have an integer or decimal variable, use the
ToString() method on that variable.

 Maximum (string) – Used when the associated textbox’s MaxValue property has not been set. When using an
IntegerTextBox, it must be a string representing an integer. For others, can be either a string representing a decimal or
integer. When programmatically assigning this value and you have an integer or decimal variable, use the
ToString() method on that variable.

Note: If you have two or more of these validators on one control, consider setting their Display property to Dynamic.

Example: IntegerTextBox

<des:IntegerTextBox id="IntegerTextBox1" runat="server"
 MinInteger="1" MaxInteger="100" />

<desmsval:RangeValidator id="RangeValidator1" runat="server"
 ControlToValiInteger="IntegerTextBox1"
 ErrorMessage="Enter a number between {MINIMUM} and {MAXIMUM}."
 />

http://msdn2.microsoft.com/en-us/library/f70d09xt(VS.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.rangevalidator_members(VS.71).aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 197 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

DifferenceValidator Control
Applies to Integer, Decimal, Currency, and Percent TextBoxes.

Use this validator to enforce that two textboxes values are a certain number apart. For example, you want two
IntegerTextBoxes to be no closer than 5 in value or two DecimalTextBoxes to be no more than 0.5 apart.

Using this Validator
Set the ID of the two textboxes in ControlToValidate and ControlToCompare. Set the difference in DifferenceValue. Set
the comparison operator in Operator.

Properties
The CompareValidator from PeterBlum.DES.NativeValidators is very similar to the CompareValidator that comes with
ASP.NET, expanding upon its ability to compare two controls. Here are its most important properties. Those not shown
below are documented here:

CompareValidator Members

 ControlToValidate (string) – The ID of the control to evaluate. It can be any DES textbox except an Enhanced
TextBox or FilteredTextBox. The TextBox must be in the same Naming Container as the validator. This is a limitation
of the Native Validation Framework. Switch to DES Validation Framework to overcome this limitation.

 Operator (enum System.Web.UI.WebControls.ValidatorCompareOperator) – The operator for the comparison between
ControlToValidate and ControlToCompare. Use any value from this enumerated type except DataTypeCheck.

o Equal

o NotEqual

o GreaterThan

o GreaterThanEqual

o LessThan

o LessThanEqual

 DataType (enum PeterBlum.DES.NativeValidators.DataTypeMode) – Leave this set to Auto. It is only used with the
TimeOfDayTextBox.

 ControlToCompare (string) – The ID from the second control to evaluate. If the ControlToValidate, it must be an
IntegerTextBox. If the ControlToValidate is a Decimal, Currency, or Percent TextBox, this can be any of those control
types. The TextBox must be in the same Naming Container as the validator.

 DifferenceValue (double) - The value to be compared to the difference between the two values. (The difference is
always an absolute value.)

Note: If you have two or more of these validators on one control, consider setting their Display property to Dynamic.

Example: Two IntegerTextBoxes that must be no less than 5 apart

<des:IntegerTextBox id="StartInteger" runat="server" />
<des:IntegerTextBox id="EndInteger" runat="server" />

<desmsval:DifferenceValidator id="DifferenceValidator1" runat="server"
 ControlToValiInteger="StartInteger" ControlToCompare="EndInteger"
 Operator="GreaterThanEqual" DifferenceValue="5"
 ErrorMessage="The Integers must not be more than 5 days apart."
 />

http://msdn2.microsoft.com/en-us/library/db330ayw(VS.71).aspx�
http://msdn2.microsoft.com/en-us/library/db330ayw(VS.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.comparevalidator_members(VS.71).aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 198 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Example: Two DecimalTextBoxes that must be no more than 0.5 apart

<des:DecimalTextBox id="StartDecimal" runat="server" />
<des:DecimalTextBox id="EndDecimal" runat="server" />

<desmsval:DifferenceValidator id="DifferenceValidator1" runat="server"
 ControlToValiDecimal="StartDecimal" ControlToCompare="EndDecimal"
 Operator="LessThanEqual" DifferenceValue="0.5"
 ErrorMessage="The Decimals must not be more than 5 days apart."
 />

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 199 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

MultiSegmentDataEntryValidator Control
Note: If you are using the DES Validation Framework, it includes a different MultiSegmentDataEntryValidator. See
“MultiSegmentDataEntryValidator Control”.

The MultiSegmentDataEntryValidator confirms that the segments of the MultiSegmentDataEntry control match the rules you
specified on the Segment objects. You should always use this Validator or its Condition on each MultiSegmentDataEntry
control.

Using This Validator
Specify the MultiSegmentDataEntry control with the ControlToValidate property. If you want this validator to work like a
RequiredFieldValidator, reporting an error when all segments are blank, set IgnoreBlankText to false.

Properties for MultiSegmentDataEntryValidator
 ControlToValidate (string) – The ID of the MultiSegmentDataEntry control. It must be in the same Naming Container

as the validator. This is a limitation of the Native Validation Framework. Switch to DES Validation Framework to
overcome this limitation.

 IgnoreBlankText (Boolean) – Determines how the Validator evaluates when all segments are blank.

When true, the validator cannot evaluate. You use a RequiredFieldValidator to report errors on it.

When false, it reports an error.

It defaults to true.

Example

Determine if MultiSegmentDataEntry1 matches its rules for a phone number.

<desmsval:MultiSegmentDataEntryValidator
 id="MultiSegmentDataEntryValidator1" runat="server"
 ControlToValidate="MultiSegmentDataEntry1"
 ErrorMessage="A phone number requires this format: ### ### ####">
</desmsval:MultiSegmentDataEntryValidator >

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 200 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

JavaScript Support Functions
This section shows how to communicate with these controls from your own JavaScript.

DES supplies the following client-side functions to any page that includes these controls.

Click on any of these topics to jump to them:

 General Utilities

 Getting and Setting the Value of Numeric TextBoxes

 Validation Functions

 MultiSegmentDataEntry Functions

General Utilities

function DES_GetById(pID)

Returns the DHTML element associated with the ID supplied. This is a wrapper around the functions document.all[]
and document.GetElementById() so that you can get the field using browser independent code.

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Return value

Returns the field object or null.

Example

var vOtherField = DES_GetById('DateTextBox1');

function DES_ParseInt(pText)

It converts it into an integer number and returns the number. While the JavaScript parseInt() function is supposed to do
this, when there is a lead zero, parseInt() believes the number is octal (base 8). Thus, 08 is returned as 10. Dates often
have lead zeros. So call this instead of parseInt(). Internally, it calls parseInt() after stripping off the lead zeroes.

Parameters

pText

The string to convert to an integer.

Return value

An integer. If the text represented a decimal value, it will return the integer portion. If it cannot be converted, it returns NaN
which you can detect with the JavaScript function isNaN(value).

Example

var vNumber = DES_ParseInt("03"); // returns 3
if (!isNaN(vNumber))
 // do something with vNumber

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:parseInt�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:parseInt�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:parseInt�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:isNaN�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:isNaN�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 201 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

function DES_SetFocus(pID)

Sets focus to the HTML element whose ID is passed in. It will not set focus if the element is not present or it’s illegal to set
focus (such as its invisible). It will also select the contents of a textbox, if the ID is to a textbox.

It calls your custom focus function defined in PeterBlum.DES.Globals.Page.SetFocusFunctionName to assist it to setting
focus. (See “Properties on PeterBlum.DES.Globals.Page” in the General Features Guide.)

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Return value

Returns the field object or null.

Example

DES_SetFocus('DateTextBox1');

function DES_Round(pValue, pMode, pDecimalPlaces)

Rounds a decimal value in several ways.

Parameters

pValue

The initial decimal value.

pMode

An integer representing one of the rounding modes:

0 = Truncate – Drop the decimals after pDecimalPlaces

1 = Currency – Round to the nearest even number

2 = Point5 – Round to the next number if .5 or higher; round down otherwise

3 = Ceiling – Returns the smallest integer greater than or equal to a number. When it’s a negative number, it will
return the number closest to zero.

4 = NextWhole - Returns the smallest integer greater than or equal to a number. When it’s a negative number, it will
return the number farthest from zero.

pDecimalPlaces

The number of decimal places to preserve. For example, when 2, it rounds based on the digits after the 2nd decimal
place.

Return value

Returns the rounded decimal value.

Example

var PI = 3.14159;
var vResult = DES_Round(PI, 0, 0); // Truncate: returns 3
vResult = DES_Round(PI, 1, 2); // Currency: returns 3.14
vResult = DES_Round(PI, 3, 0); // Ceiling: returns 4

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 202 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

function DES_Trunc(pValue)

Returns the integer part of a decimal value. Converts the type from float to integer.

Parameters

pValue

The initial decimal value.

Return value

Returns the integer part of a decimal value. Converts the type from float to integer.

Example

var PI = 3.14159;
var vResult = DES_Trunc(PI); // returns 3

function DES_SetInnerHTML(pField, pHTML)

A browser independent way to update the inner HTML of a tag. Usually you will define a tag with an ID. The inner
HTML of that tag will be updated. A System.Web.UI.WebControls.Label creates such a tag and its
ClientID is the ID to find the tag on the page.

Parameters

pField

The DHTML element for the HTML table. Use DES_GetById() to convert a ClientID into an DHTML element.
See “Embedding the ClientID into your Script”.

pHTML

The inner HTML.

Example

DES_SetInnerHTML(DES_GetById('Label1'), 'New Text');

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 203 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Getting and Setting the Value of Numeric TextBoxes

function DES_GetDTTBValue(pID)

Supports Integer, Decimal, Currency and Percent TextBoxes.

Retrieve the value of the numeric textbox. When using an IntegerTextBox, the value returned is an integer. Otherwise it is a
floating point. If it cannot convert the text into a number, it returns null. The same function is used by all date, time and
numeric textboxes. The “DTTB” stands for “DataTypeTextBox”.

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Return value

Returns an integer or floating point value. If it cannot convert the text into a valid number, it returns null.

Example

var vNumber = DES_GetDTTBValue('IntegerTextBox1');
if (vNumber != null)
 // do something with vNumber

function DES_SetDTTBValue(pID, pValue, pAfter)

Supports Integer, Decimal, Currency and Percent TextBoxes.

Assign a number to a numeric TextBox. The same function is used by all date, time and numeric textboxes. The “DTTB”
stands for “DataTypeTextBox”.

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

pValue

The number. When using an IntegerTextBox, the value must be an integer type. Otherwise pass a floating point
value.

If you pass null, it clears the textbox (assigning it to the ValueWhenBlank if setup).

pAfter

(optional) Determines what else happens. It can call your function defined in OnChangeFunctionName. It can fire
the DHTML onchange event (which will update validators and cause any DES control that is monitoring the
TextBox to fire.)

It takes these integers:

0 - Do nothing.

1 - Fire OnChangeFunction but do not call onchange event.

2 - Fire onchange event but do not call OnChangeFunction.

4 or null - fire onchange event and call OnChangeFunction.

10 - fire onchange event and call OnChangeFunction when CommandsFireOnChangeFunction is true.

null is usually passed unless another one of these settings make more sense.

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 204 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Example

DTB_SetDTTBValue('IntegerTextBox1', 100, null);

If you want to clear the numeric TextBox, pass null into the pValue parameter.

DTB_SetDTTBValue('IntegerTextBox1', null, null);

function DES_FormatDTTBValue(pID, pValue)

Supports Integer, Decimal, Currency and Percent TextBoxes.

Prepares a string from the value supplied, formatting it according to the rules of the TextBox control. Use this to create
strings to place in label fields.

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

pValue

The number to format. When using an IntegerTextBox, the value must be an integer type. Otherwise pass a floating
point value.

If you pass null, it clears the textbox (assigning it to the ValueWhenBlank if setup).

Return value

Returns the string representation of the value if it could be formatted and null if it could not (because it could not convert
the value or it was an illegal TextBox ID.)

Example

var vText = DES_FormatDTTBValue('IntegerTextBox1', 100);
if (vText != null)
 DES_SetInnerHTML(DES_GetById('Label1'), vText);

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 205 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Validation Functions

function DES_FieldChanged(pID)

Runs client-side validation on the control using the DES Validation Framework. It runs all Validators attached to the control.

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Example

DES_FieldChanged('TextBox1');

function DES_IsValid(pID)

Determines if the control is valid using the DES Validation Framework. It does NOT run validation. It merely returns the
state from the most recent validation.

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Return value

Returns true if all validators are valid.

Returns false if at least one validator is invalid.

Returns null if pID has no client-side validators attached.

function DES_ValidateGroup(pGroup)

Runs client-side validation on the control using the DES Validation Framework. It runs all Validators attached to the control.

Parameters

pGroup

The Validation Group name. Can be "". Pass "*" to validate every enabled validator regardless of the group.

Return value

True when all validators are valid. False otherwise.

Example

DES_ValidateGroup('');

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 206 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

MultiSegmentDataEntry Functions
The following functions are only available on the MultiSegmentDataEntry control.

function DES_GetTextMSDE(FieldID)

Only supports the MultiSegmentDataEntry control.

Returns a string representation of the current value. When the ValidatorsUse property is TextNoSeparators, it omits the
separators from FormattingTextBefore and FormattingTextAfter. Otherwise, it includes that formatting.

There is no equivalent method to set the value of this control.

Parameters

FieldID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Return value

The string representation of the current value. It does not care if the content is invalid. It returns whatever is there.

Example

var text = DES_GetTextMSDE('<% =MultiSegmentDataEntry1.ClientID %>');

function DES_ValMSDE(FieldID)

Only supports the MultiSegmentDataEntry control.

Fires all Validators associated with the control, including those directly attached to the data entry controls of the segments. It
returns true if all are valid; false if not.

Use this to update the appearance after making changes, such as through DES_ClearMSDE() and
DES_RestoreMSDE(). Also use it to form logic based on the validation state of the control.

Validation automatically runs at the usual times: after a user’s edit and when the page is submitted.

Parameters

FieldID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Return value

Boolean. When true, it is value. When false, it is not.

Example

if (DES_ValMSDE('<% =MultiSegmentDataEntry1.ClientID %>'))
 // it is valid

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 207 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

function DES_ClearMSDE(FieldID)

Only supports the MultiSegmentDataEntry control.

Clears all segments to a blank state. It does not return a value.

Parameters

FieldID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Example

DES_ClearMSDE('<% =MultiSegmentDataEntry1.ClientID %>');

MultiSegmentDataEntry offers the method GetClearScript() that returns this code as you create scripts on the server
side. It can call DES_ValMSDE() for you by setting the pValidate parameter to true.

[C#]

public string GetClearScript(bool pValidate);

[VB]

Public Function GetClearScript(ByVal pValidate As Boolean) As String

Example

Makes the Clear button’s onclick event clear the fields while preventing postback (with return set to false). Your button
must have CausesValidation=false.

[C#]

ClearButton.Attributes.Add("onclick",
 MultiSegmentDataEntry1.GetClearScript(true) + "return false;");

[VB]

ClearButton.Attributes.Add("onclick", _
 MultiSegmentDataEntry1.GetClearScript(True) + "return false;")

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 208 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

function DES_RestoreMSDE(FieldID)

Only supports the MultiSegmentDataEntry control.

Restores all segments to their initial value when the page was loaded or to the last call of DES_SaveMSDE(). It does not
return a value.

It is often used with an undo command, like a Restore button next to this control.

Parameters

FieldID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Example

DES_RestoreMSDE('<% =MultiSegmentDataEntry1.ClientID %>');

MultiSegmentDataEntry offers the method GetRestoreScript() that returns this code as you create scripts on the
server side. It can call DES_ValMSDE() for you by setting the pValidate parameter to true.

[C#]

public string GetRestoreScript(bool pValidate);

[VB]

Public Function GetRestoreScript(ByVal pValidate As Boolean) As String

Example

Makes the Restore button’s onclick event Restore the fields while preventing postback (with return set to false). Your
button must have CausesValidation=false.

[C#]

RestoreButton.Attributes.Add("onclick",
 MultiSegmentDataEntry1.GetRestoreScript(true) + "return false;");

[VB]

RestoreButton.Attributes.Add("onclick", _
 MultiSegmentDataEntry1.GetRestoreScript(True) + "return false;")

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 209 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

function DES_SaveMSDE(FieldID)

Only supports the MultiSegmentDataEntry control.

Captures the current values of the MultiSegmentDataEntry for later restoration when using DES_RestoreMSDE(). It does
not return a value.

It is invoked as the page is first loaded, so DES_RestoreMSDE() will be able to restore to the initial page value.

Parameters

FieldID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Example

DES_SaveMSDE('<% =MultiSegmentDataEntry1.ClientID %>');

MultiSegmentDataEntry offers the method GetSaveScript() that returns this code as you create scripts on the server
side.

[C#]

public string GetSaveScript(bool pValidate);

[VB]

Public Function GetSaveScript(ByVal pValidate As Boolean) As String

Example

Makes the Save button’s onclick event Save the fields while preventing postback (with return set to false). Your button
must have CausesValidation=false. Note: It’s not typical to use a button to save. You generally write code that includes
this as part of its processes.

[C#]

SaveButton.Attributes.Add("onclick",
 MultiSegmentDataEntry1.GetSaveScript(true) + "return false;");

[VB]

SaveButton.Attributes.Add("onclick", _
 MultiSegmentDataEntry1.GetSaveScript(True) + "return false;")

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 210 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

function DES_EnableMSDE(FieldID, enable)

Only supports the MultiSegmentDataEntry control.

Enables or disables the segments of the MultiSegmentDataEntry control.

Parameters

FieldID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

enable

Boolean. When true, enable the segments. When false, disable the segments.

Example

DES_EnableMSDE('<% =MultiSegmentDataEntry1.ClientID %>', false);

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 211 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Adding Your JavaScript to the Page
Some of DES’s features allow you to write your own JavaScript. When writing JavaScript, you can put it in three places:

 Directly on the page. It is typically placed before the <form> tag. Be sure to enclose it in <script> tags like this:

<script type='text/javascript' language='javascript' >
<!--
add your function code here
// -->
</script>

 In your Page_Load() code using the Page.RegisterClientScriptBlock() method. You must still include
the <script> tags in your code:

[C#]

uses System.Text;
...
protected void Page_Load(object sender, System.EventArgs e)
{
 StringBuilder vScript = new StringBuilder(2000);
 vScript.Append("<script type='text/javascript' language='javascript' >\n");
 vScript.Append("<!-- \n");
 vScript.Append(add your function code here);
 vScript.Append("// -->\n</script>\n");
 RegisterClientScriptBlock("KeyName", vScript.ToString());
}

[VB]

Imports System.Text
...
Protected Sub Page_Load(ByVal sender As object, _
 ByVal e As System.EventArgs)

 Dim vScript As StringBuilder = New StringBuilder(2000)
 vScript.Append("<script type='text/javascript' language='javascript' >")
 vScript.Append("<!-- ")
 vScript.Append(add your function code here)
 vScript.Append("// --></script>")
 RegisterClientScriptBlock("KeyName", vScript.ToString())
End Sub

 In a separate file, dedicated to JavaScript. This file doesn’t need <script> tags. Instead, the page needs
<script src= > tags to load it. The script tags should appear before the <form> tag.

<script type='text/javascript' language='javascript' src='url to the file' />

Embedding the ClientID into your Script
If your scripts are embedded into your web form, you can use this syntax to get the ClientID:

'<% =ControlName.ClientID %>'

For example:

DES_GetById('<% =ControlName.ClientID %>');

If you create the script programmatically, simply embed the ClientID property value. For example:

vScript = "DES_GetById('" + ControlName.ClientID + "');"

http://msdn2.microsoft.com/en-us/library/system.web.ui.page.registerclientscriptblock(vs.71).aspx�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 212 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Debugging Your JavaScript

Using Internet Explorer

You can debug JavaScript in Internet Explorer by using Visual Studio as your debugger. Open the Tools; Internet Options
menu command and select the Advanced tab. Then unmark Disable Script Debugging.

After launching your web page from Visual Studio, switch back to Visual Studio. Then select Debug; Windows; Script
Explorer (or Running Documents in VS2002/3) from the menubar. Double-click on the filename containing the JavaScript
function and set a breakpoint inside the function. Now resume using your browser.

Using FireFox

Use the FireBug debugger for FireFox. Get it here: https://addons.mozilla.org/en-US/firefox/addon/1843

https://addons.mozilla.org/en-US/firefox/addon/1843�

Peter’s TextBoxes a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 213 of 213
http://www.PeterBlum.com For technical support and other assistance, see page 7

Troubleshooting
Here are some issues that you may run into. Remember that technical support is available from support@PeterBlum.com. We
encourage you to use this knowledge base first.

This guide contains problems specific to the Peter’s TextBoxes module. Please see the “Troubleshooting” section of the
General Features Guide for an extensive list of other topics including “Handling JavaScript Errors” and “Common Error
Messages”.

Runtime Problems
Also see the “Troubleshooting” section of the General Features Guide.

These controls do not filter keystrokes

There are a number of settings that can disable the client-side features of these controls.

 Browser does not support DES’s code: see “Browser Support” in the Validation User’s Guide.

 TextBoxes have a property that turns off the keyboard feature: UseKeyboardFiltering. Is it false?

 The user has shut off JavaScript on their browser.

 There is a scripting error. This requires your own custom code added to the onkeypress or onkeydown events. See the
topic above, “Handling JavaScript Errors” in the Troubleshooting section of the General Features Guide.

 If the page is called from Server.Transfer(), you must add some code to the original and destination pages. See
“Using Server.Transfer” in the General Features Guide.

Design Mode Problems
Also see the “Troubleshooting” section of the General Features Guide.

The TextBox control lacks some properties in the Properties Editor

The control may be the System.Web.UI.WebControl.TextBox. Change it to an Enhanced TextBox. See “Converting the
ASP.NET TextBox to the Enhanced TextBox”.

mailto:support@PeterBlum.com�

	License Information
	Platform Support
	Technical Support and Other Assistance
	What does Peter’s Data Entry Suite Do?
	Peter’s TextBoxes Overview
	Enhanced TextBox Overview
	IntegerTextBox, DecimalTextBox, CurrencyTextBox, and PercentTextBox Overview
	FilteredTextBox Overview
	MultiSegmentDataEntry Control Overview
	Date and Time Entry TextBoxes
	Other Data Entry Controls

	Enhanced TextBox Control
	Features
	Using the Enhanced TextBox Control
	Adding an Enhanced TextBox
	Converting the ASP.NET TextBox to the Enhanced TextBox
	Properties for the Enhanced TextBox

	IntegerTextBox Control
	Features
	Using the IntegerTextBox
	Adding a IntegerTextBox
	Properties for the IntegerTextBox

	DecimalTextBox Control
	Features
	Using the DecimalTextBox
	Adding a DecimalTextBox
	Properties for the DecimalTextBox

	CurrencyTextBox Control
	Features
	Using the CurrencyTextBox
	Adding a CurrencyTextBox
	Properties for the CurrencyTextBox

	PercentTextBox Control
	Features
	Using the PercentTextBox
	Adding a PercentTextBox
	Properties for the PercentTextBox

	FilteredTextBox Control
	Features
	Using the FilteredTextBox
	Adding a FilteredTextBox Control
	Properties of the FilteredTextBox

	MultiSegmentDataEntry Control
	Features
	Using the MultiSegmentDataEntry Control
	Adding a MultiSegmentDataEntry Control
	Properties for the MultiSegmentDataEntry Control
	Properties for the PeterBlum.DES.TextSegment Class
	Properties for the PeterBlum.DES.IntegerTextSegment Class
	Properties for the PeterBlum.DES.DropDownListSegment Class
	Examples
	MultiSegmentDataEntryValidator Control
	Subclassing MultiSegmentDataEntry

	Additional Topics for Using These Controls
	Page Level Properties
	Properties on PeterBlum.DES.Globals.Page

	Validation with the Native Validation Framework
	Setting Up DES with the Native Validation Framework
	Check the DataType with the CompareValidator Control
	Compare To Value with the CompareValidator Control
	Compare Two Fields with the CompareValidator Control
	RangeValidator Control
	DifferenceValidator Control
	MultiSegmentDataEntryValidator Control

	JavaScript Support Functions
	General Utilities
	Getting and Setting the Value of Numeric TextBoxes
	Validation Functions
	MultiSegmentDataEntry Functions

	Adding Your JavaScript to the Page
	Embedding the ClientID into your Script
	Debugging Your JavaScript

	Troubleshooting
	Runtime Problems
	Design Mode Problems

	Word Bookmarks
	TableOfContents
	DevelopersKit
	TextBox_Using
	Examples_IllegalCharacters
	TextBox_Adding
	TextBox_Properties
	IntegerTextBox_Using
	IntegerTextBox_Adding
	IntegerTextBox_Properties
	DecimalTextBox_Using
	DecimalTextBox_Adding
	DecimalTextBox_Properties
	DTB_MaxDecimalPlaces
	CurrencyTextBox_Using
	CurrencyTextBox_Adding
	CurrencyTextBox_Properties
	PercentTextBox_Using
	PercentTextBox_Adding
	PercentTextBox_Properties
	FilteredTextBox_Using
	FilteredTextBox_Adding
	FilteredTextBox_Properties
	MSDE_Using
	Segments_Using
	MSDE_Adding
	Segments_Adding
	MSDE_Properties
	MSDE_Segments
	ControlToEvaluate
	CultureInfoProperty
	DESPage_JavaScriptEnabled
	DESPage_ValueWhenBlankMode
	DESPage_EnableButtonImageEffects
	DESPage_SpinnerManager
	DES_GetById
	DES_ParseInt
	DES_Trunc
	DES_SetInnerHTML
	DES_GetByDTTBValue
	DES_SetByDTTBValue

